nature.com

Atmospheric oxygenation caused by a change in volcanic degassing pressure - Nature

  • ️Arndt, Nicholas T.
  • ️Wed Oct 12 2011
  • Buick, R. When did oxygenic photosynthesis evolve? Phil. Trans. R. Soc. Lond. B 363, 2731–2743 (2008)

    Article  CAS  Google Scholar 

  • Campbell, I. H. & Allen, C. M. Formation of supercontinents linked to increases in atmospheric oxygen. Nature Geosci. 1, 554–558 (2008)

    Article  ADS  CAS  Google Scholar 

  • Kasting, J. F., Eggler, D. H. & Raeburn, S. P. Mantle redox evolution and the oxidation state of the Archean atmosphere. J. Geol. 101, 245–257 (1993)

    Article  ADS  CAS  Google Scholar 

  • Holland, H. D. Volcanic gases, black smokers, and the Great Oxidation Event. Geochim. Cosmochim. Acta 66, 3811–3826 (2002)

    Article  ADS  CAS  Google Scholar 

  • Canil, D. Vanadium in peridotites, mantle redox and tectonic environments: Archean to present. Earth Planet. Sci. Lett. 195, 75–90 (2002)

    Article  ADS  CAS  Google Scholar 

  • Li, Z. X. A. & Lee, C. T. A. The constancy of upper mantle fO2 through time inferred from V/Sc ratios in basalts. Earth Planet. Sci. Lett. 228, 483–493 (2004)

    Article  ADS  CAS  Google Scholar 

  • Farquhar, J. et al. Isotopic evidence for Mesoarchaean anoxia and changing atmospheric sulphur chemistry. Nature 449, 706–709 (2007)

    Article  ADS  CAS  Google Scholar 

  • Canfield, D. E., Habicht, K. S. & Thamdrup, B. The Archean sulphur cycle and the early history of atmospheric oxygen. Nature 288, 658–661 (2000)

    CAS  Google Scholar 

  • Farquhar, J., Bao, H. & Thiemans, M. Atmospheric influence of Earth’s earliest sulfur cycle. Science 289, 756–758 (2000)

    Article  ADS  CAS  Google Scholar 

  • Zahnle, K. J., Claire, M. W. & Catling, D. C. The loss of mass-independent fractionation in sulfur due to a Paleoproterozoic collapse of atmospheric methane. Geobiology 4, 271–283 (2006)

    Article  CAS  Google Scholar 

  • Halevy, I., Johnston, D. T. & Schrag, D. P. Explaining the structure of the Archean mass-independent sulfur isotope record. Science 329, 204–207 (2010)

    Article  ADS  CAS  Google Scholar 

  • Kump, L. R. & Barley, M. E. Increased subaerial volcanism and the rise of atmospheric oxygen 2.5 billion years ago. Nature 448, 1033–1036 (2007)

    Article  ADS  CAS  Google Scholar 

  • Butterfield, D. A. et al. Seafloor eruptions and evolution of hydrothermal fluid chemistry. Phil. Trans. R. Soc. Lond. A 355, 369–386 (1997)

    Article  ADS  CAS  Google Scholar 

  • Kump, L. R. & Seyfried, W. E. Hydrothermal Fe fluxes during the Precambrian: effect of low oceanic sulfate concentrations and low hydrostatic pressure on the composition of black smokers. Earth Planet. Sci. Lett. 235, 654–662 (2005)

    Article  ADS  CAS  Google Scholar 

  • Carmichael, I. S. E. The redox states of basic and silicic magmas: a reflection of their source regions? Contrib. Mineral. Petrol. 106, 129–141 (1991)

    Article  ADS  CAS  Google Scholar 

  • Gaillard, F. & Scaillet, B. The sulfur content of volcanic gases on Mars. Earth Planet. Sci. Lett. 279, 34–43 (2009)

    Article  ADS  CAS  Google Scholar 

  • Oppenheimer, C., Scaillet, B. & Martin, R. S. Sulfur degassing from volcanoes: source conditions, surveillance, plume chemistry and Earth system impacts. Rev. Mineral. Geochem. 73, 363–421 (2011)

    Article  CAS  Google Scholar 

  • Aiuppa, A. et al. H2S fluxes from Mt. Etna, Stromboli and Vulcano (Italy) and implications for the global volcanic sulfur budget. Geochim. Cosmochim. Acta 69, 1861–1871 (2005)

    Article  ADS  CAS  Google Scholar 

  • Bickle, M. J. Heat loss from the Earth: a constraint on Archaean tectonics from the relation between geothermal gradients and the rate of heat production. Earth Planet. Sci. Lett. 40, 301–315 (1978)

    Article  ADS  Google Scholar 

  • Sleep, N. H. & Windley, B. F. Archean plate tectonics—constraints and inferences. J. Geol. 90, 363–379 (1982)

    Article  ADS  Google Scholar 

  • Kasting, J. F. & Holm, N. G. What determines the volume of the oceans. Earth Planet. Sci. Lett. 109, 507–515 (1992)

    Article  ADS  CAS  Google Scholar 

  • Bounama, C., Franck, S. & von Bloh, W. The fate of the Earth’s ocean. Hydrol. Earth Syst. Sci. 5, 569–575 (2001)

    Article  ADS  Google Scholar 

  • Sandiford, M. & McLaren, S. in Evolution and Differentiation of the Continental Crust (eds Brown, M. & Rushmer, T) 67–92 (Cambridge University Press, 2006)

    Google Scholar 

  • Arndt, N. T. Why was flood volcanism on submerged continental platforms so common in the Precambrian? Precambr. Res. 97, 155–164 (1998)

    Article  ADS  Google Scholar 

  • Flament, N., Coltice, N. & Rey, P. F. A case for late-Archaean continental emergence from thermal evolution models and hypsometry. Earth Planet. Sci. Lett. 275, 326–336 (2008)

    Article  ADS  CAS  Google Scholar 

  • Taylor, S. R. & McLennan, S. M. The Continental Crust: Its Composition and Evolution 1–312 (Blackwell, 1985)

    Google Scholar 

  • Habicht, K. S., Gade, M., Thamdrup, B., Berg, P. & Canfield, D. E. Calibration of sulfate levels in the Archean ocean. Science 298, 2372–2374 (2002)

    Article  ADS  CAS  Google Scholar 

  • Lyons, T. W. & Gill, B. C. Ancient sulfur cycling and oxygenation of the early biosphere. Elements 6, 93–99 (2010)

    Article  CAS  Google Scholar 

  • Scott, C. T. et al. Late Archean euxinic conditions before the rise of atmospheric oxygen. Geology 39, 119–122 (2011)

    Article  ADS  CAS  Google Scholar 

  • Claire, M. W., Catling, D. C. & Zahnle, K. J. Biogeochemical modelling of the rise in atmospheric oxygen. Geobiology 4, 239–269 (2006)

    Article  CAS  Google Scholar 

  • Shi, P. F. & Saxena, S. K. Thermodynamic modelling of the C-H-O-S fluid system. Am. Mineral. 77, 1038–1049 (1992)

    CAS  Google Scholar 

  • Morizet, Y., Paris, M., Gaillard, F. & Scaillet, B. C–O–H fluid solubility in haplobasalt under reducing conditions: an experimental study. Chem. Geol. 279, 1–16 (2010)

    Article  ADS  CAS  Google Scholar 

  • O'Neill, H. S. C. & Mavrogenes, J. The sulfide saturation capacity and the sulphur content at sulfide saturation of silicate melts at 1400 °C and 1 bar. J. Petrol. 43, 1049–1087 (2002)

    Article  ADS  CAS  Google Scholar 

  • Gaillard, F., Schmidt, B. C., Mackwell, S. & McCammon, C. Rate of hydrogen-iron redox exchange in silicate melts and glasses. Geochim. Cosmochim. Acta 67, 2427–2441 (2003)

    Article  ADS  CAS  Google Scholar 

  • Kress, V. C. & Carmichael, I. S. E. The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states. Contrib. Mineral. Petrol. 108, 82–92 (1991)

    Article  ADS  CAS  Google Scholar 

  • Burgisser, A. & Scaillet, B. Redox evolution of degassing magma rising to the surface. Nature 445, 194–197 (2007)

    Article  ADS  CAS  Google Scholar 

  • Pommier, A., Gaillard, F. & Pichavant, M. Time-dependent changes of the electrical conductivity of basaltic melts with redox state. Geochim. Cosmochim. Acta 74, 1653–1671 (2010)

    Article  ADS  CAS  Google Scholar