mathworld.wolfram.com

Automorphism -- from Wolfram MathWorld

  • ️Weisstein, Eric W.
Algebra Applied Mathematics Calculus and Analysis Discrete Mathematics Foundations of Mathematics Geometry History and Terminology Number Theory Probability and Statistics Recreational Mathematics Topology Alphabetical Index New in MathWorld

An automorphism is an isomorphism of a system of objects onto itself. The term derives from the Greek prefix alphaupsilontauomicron (auto) "self" and muomicronrhophiomegasigmaiotasigma (morphosis) "to form" or "to shape."

The automorphisms of a graph always describe a group (Skiena 1990, p. 19).

An automorphism of a region of the complex plane is a conformal self-map (Krantz 1999, p. 81).


See also

Anosov Automorphism, Field Automorphism, Graph Automorphism, Automorphism Group

Explore with Wolfram|Alpha

References

Krantz, S. G. Handbook of Complex Variables. Boston, MA: Birkhäuser, p. 81, 1999.Skiena, S. Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley, 1990.

Referenced on Wolfram|Alpha

Automorphism

Cite this as:

Weisstein, Eric W. "Automorphism." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Automorphism.html

Subject classifications