mathworld.wolfram.com

Cyclide -- from Wolfram MathWorld

  • ️Weisstein, Eric W.
Algebra Applied Mathematics Calculus and Analysis Discrete Mathematics Foundations of Mathematics Geometry History and Terminology Number Theory Probability and Statistics Recreational Mathematics Topology Alphabetical Index New in MathWorld


See also

Cyclidic Coordinates, Horn Cyclide, Inversion, Inversion Sphere, Parabolic Horn Cyclide, Parabolic Ring Cyclide, Ring Cyclide, Spindle Cyclide, Standard Tori

Explore with Wolfram|Alpha

References

Update a linkBierschneider-Jakobs, A. "Cyclides." http://www.mi.uni-erlangen.de/~biersch/cyclides.htmlByerly, W. E. An Elementary Treatise on Fourier's Series, and Spherical, Cylindrical, and Ellipsoidal Harmonics, with Applications to Problems in Mathematical Physics. New York: Dover, p. 273, 1959.Eisenhart, L. P. "Cyclides of Dupin." §133 in A Treatise on the Differential Geometry of Curves and Surfaces. New York: Dover, pp. 312-314, 1960.Fischer, G. (Ed.). Plates 71-77 in Mathematische Modelle aus den Sammlungen von Universitäten und Museen, Bildband. Braunschweig, Germany: Vieweg, pp. 66-72, 1986.JavaView. "Classic Surfaces from Differential Geometry: Dupin Cycloid." http://www-sfb288.math.tu-berlin.de/vgp/javaview/demo/surface/common/PaSurface_DupinCycloid.html.Marsan, A. "Cyclides." http://www.engin.umich.edu/dept/meam/deslab/cadcam/Cyclides/cyclide.html.Nordstrand, T. "Dupin Cyclide." http://jalape.no/math/dupintxt.Pinkall, U. "Cyclides of Dupin." Ch. 3, §3 in Mathematical Models from the Collections of Universities and Museums: Commentary. (Ed. G. Fischer). Braunschweig, Germany: Vieweg, pp. 28-30, 1986.Pinkall, U. "Dupinsche Zykliden." Ch. 3, §3 in Mathematische Modelle aus den Sammlungen von Universitäten und Museen: Kommentarband (Ed. G. Fischer). Braunschweig, Germany: Vieweg, pp. 30-33, 1986.Salmon, G. Analytic Geometry of Three Dimensions. New York: Chelsea, p. 527, 1979.Trott, M. Graphica 1: The World of Mathematica Graphics. The Imaginary Made Real: The Images of Michael Trott. Champaign, IL: Wolfram Media, pp. 16 and 84, 1999.Wells, D. The Penguin Dictionary of Curious and Interesting Geometry. London: Penguin, p. 62, 1991.

Referenced on Wolfram|Alpha

Cyclide

Cite this as:

Weisstein, Eric W. "Cyclide." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Cyclide.html

Subject classifications