mathworld.wolfram.com

Desargues' Theorem -- from Wolfram MathWorld

  • ️Weisstein, Eric W.
Algebra Applied Mathematics Calculus and Analysis Discrete Mathematics Foundations of Mathematics Geometry History and Terminology Number Theory Probability and Statistics Recreational Mathematics Topology Alphabetical Index New in MathWorld

DesarguesTheorem

If the three straight lines joining the corresponding vertices of two triangles ABC and A^'B^'C^' all meet in a point (the perspector), then the three intersections of pairs of corresponding sides lie on a straight line (the perspectrix). Equivalently, if two triangles are perspective from a point, they are perspective from a line.

The 10 lines and 10 3-line intersections form a 10_3 configuration sometimes called Desargues' configuration.

Desargues' theorem is self-dual.


See also

Desargues' Configuration, Duality Principle, Pappus's Hexagon Theorem, Pascal Lines, Pascal's Theorem, Perspector, Perspective Triangles, Perspectrix, Self-Dual

Explore with Wolfram|Alpha

References

Coxeter, H. S. M. The Beauty of Geometry: Twelve Essays. New York: Dover, p. 244, 1999.Coxeter, H. S. M. and Greitzer, S. L. "Perspective Triangles; Desargues's Theorem." §3.6 in Geometry Revisited. Washington, DC: Math. Assoc. Amer., pp. 70-72, 1967.Durell, C. V. Modern Geometry: The Straight Line and Circle. London: Macmillan, p. 44, 1928.Eves, H. "Desargues' Two-Triangle Theorem." §6.2.5 in A Survey of Geometry, rev. ed. Boston, MA: Allyn & Bacon, pp. 249-251, 1965.Graustein, W. C. Introduction to Higher Geometry. New York: Macmillan, pp. 23-25, 1930.Ogilvy, C. S. Excursions in Geometry. New York: Dover, pp. 89-92, 1990.Johnson, R. A. Modern Geometry: An Elementary Treatise on the Geometry of the Triangle and the Circle. Boston, MA: Houghton Mifflin, p. 231, 1929.Wells, D. The Penguin Dictionary of Curious and Interesting Numbers. Middlesex, England: Penguin Books, p. 77, 1986.Wells, D. The Penguin Dictionary of Curious and Interesting Geometry. London: Penguin, pp. 54-55, 1991.

Referenced on Wolfram|Alpha

Desargues' Theorem

Cite this as:

Weisstein, Eric W. "Desargues' Theorem." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/DesarguesTheorem.html

Subject classifications