Mean-Value Theorem -- from Wolfram MathWorld
- ️Weisstein, Eric W.
See also
Extended Mean-Value Theorem, Gauss's Mean-Value Theorem, Intermediate Value Theorem Explore this topic in the MathWorld classroom
Explore with Wolfram|Alpha
References
Anton, H. Calculus with Analytic Geometry, 2nd ed. New York: Wiley, pp. 262-263, 1984.Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals, Series, and Products, 6th ed. San Diego, CA: Academic Press, pp. 1097-1098, 2000.Jeffreys, H. and Jeffreys, B. S. "Mean-Value Theorems." §1.13 in Methods of Mathematical Physics, 3rd ed. Cambridge, England: Cambridge University Press, pp. 49-50, 1988.
Referenced on Wolfram|Alpha
Cite this as:
Weisstein, Eric W. "Mean-Value Theorem." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Mean-ValueTheorem.html