mathworld.wolfram.com

Mean-Value Theorem -- from Wolfram MathWorld

  • ️Weisstein, Eric W.
Algebra Applied Mathematics Calculus and Analysis Discrete Mathematics Foundations of Mathematics Geometry History and Terminology Number Theory Probability and Statistics Recreational Mathematics Topology Alphabetical Index New in MathWorld


See also

Extended Mean-Value Theorem, Gauss's Mean-Value Theorem, Intermediate Value Theorem Explore this topic in the MathWorld classroom

Explore with Wolfram|Alpha

References

Anton, H. Calculus with Analytic Geometry, 2nd ed. New York: Wiley, pp. 262-263, 1984.Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals, Series, and Products, 6th ed. San Diego, CA: Academic Press, pp. 1097-1098, 2000.Jeffreys, H. and Jeffreys, B. S. "Mean-Value Theorems." §1.13 in Methods of Mathematical Physics, 3rd ed. Cambridge, England: Cambridge University Press, pp. 49-50, 1988.

Referenced on Wolfram|Alpha

Mean-Value Theorem

Cite this as:

Weisstein, Eric W. "Mean-Value Theorem." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Mean-ValueTheorem.html

Subject classifications