mathworld.wolfram.com

Scale Factor -- from Wolfram MathWorld

  • ️Weisstein, Eric W.
Algebra Applied Mathematics Calculus and Analysis Discrete Mathematics Foundations of Mathematics Geometry History and Terminology Number Theory Probability and Statistics Recreational Mathematics Topology Alphabetical Index New in MathWorld

For a diagonal metric tensor g_(ij)=g_(ii)delta_(ij), where delta_(ij) is the Kronecker delta, the scale factor for a parametrization x_1=f_1(q_1,q_2,...,q_n), x_2=f_2(q_1,q_2,...,q_n), ..., is defined by

The line element (first fundamental form) is then given by

The scale factor appears in vector derivatives of coordinates in curvilinear coordinates.


See also

Curvilinear Coordinates, Fundamental Forms, Line Element, Metric Tensor

Explore with Wolfram|Alpha

References

Arfken, G. Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, p. 87, 1985.

Referenced on Wolfram|Alpha

Scale Factor

Cite this as:

Weisstein, Eric W. "Scale Factor." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/ScaleFactor.html

Subject classifications