oeis.org

A104712 - OEIS

1, 3, 1, 6, 4, 1, 10, 10, 5, 1, 15, 20, 15, 6, 1, 21, 35, 35, 21, 7, 1, 28, 56, 70, 56, 28, 8, 1, 36, 84, 126, 126, 84, 36, 9, 1, 45, 120, 210, 252, 210, 120, 45, 10, 1, 55, 165, 330, 462, 462, 330, 165, 55, 11, 1, 66, 220, 495, 792, 924, 792, 495, 220, 66, 12, 1, 78, 286, 715

COMMENTS

A000295 (Eulerian numbers) gives the row sums.

Write A004736 and Pascal's triangle as infinite lower triangular matrices A and B; then A*B is this triangle.

A slight variation has a combinatorial interpretation: remove the last column and the second one from Pascal's triangle. Let P(m, k) denote the set partitions of {1,2,..,n} with the following properties:

(a) Each partition has at least one singleton block;

(c) k is the size of the largest block of the partition;

(b) m = n - k + 1 is the number of parts of the partition.

Then A000295(n) = Sum_{k=1..n} card(P(n-k+1,k)).

For instance, A000295(4) = P(4,1) + P(3,2) + P(2,3) + P(1,4) = card({1|2|3|4}) + card({1|2|34, 1|3|24,1|4|23, 2|3|14, 2|4|13, 3|4|12}) + card({1|234, 2|134, 3|124, 4|123}) = 1 + 6 + 4 = 11.

This interpretation can be superimposed on the sequence by changing the offset to 1 and adding the value 1 in front. The triangle then starts

1;

1, 3;

1, 6, 4;

1, 10, 10, 5;

1, 15, 20, 15, 6;

...

(End)

Relation to K-theory: T acting on the column vector (d,-d^2,d^3,...) generates the Euler classes for a hypersurface of degree d in CP^n. Cf. Dugger p. 168, A111492, A238363, and A135278. - Tom Copeland, Apr 11 2014

FORMULA

a(n,k) = binomial(n,k), for 2 <= k <= n.

The following remarks assume an offset of 0.

Riordan array (1/(1 - x)^3, x/(1 - x)).

O.g.f.: 1/(1 - t)^2*1/(1 - (1 + x)*t) = 1 + (3 + x)*t + (6 + 4*x + x^2)*t^2 + ....

E.g.f.: (1/x*d/dt)^2 (exp(t)*(exp(x*t) - 1 - x*t) = 1 + (3 + x)*t + (6 + 4*x + x^2)*t^2/2! + ....

The infinitesimal generator for this triangle has the sequence [3,4,5,...] on the main subdiagonal and 0's elsewhere. (End)

As triangle T(n,k), 0<=k<=n: T(n,k) = 3*T(n-1,k) + T(n-1,k-1) - 3*T(n-2,k) - 2*T(n-2,k-1) + T(n-3,k) + T(n-3,k-1), T(0,0)=1, T(n,k)=0 if k<0 or if k>n. - Philippe Deléham, Jan 11 2014

A) The infinitesimal generator for this matrix is given in A132681 with m=2. See that entry for numerous relations to differential operators and the Laguerre polynomials of order m=2, i.e., Lag(n,t,2) = Sum_{j=0..n} binomial(n+2,n-j)*(-t)^j/j!.

B) O.g.f.: 1 / { [ 1 - t * x/(1-x) ] * (1-x)^3 }

C) O.g.f. of row e.g.f.s: exp[t*x/(1-x)]/(1-x)^3 = [Sum_{n>=0} x^n * Lag(n,-t,2)] = 1 + (3 + t)*x + (6 + 4t + t^2/2!)*x^2 + (10 + 10t + 5t^2/2! + t^3/3!)*x^3 + ....

D) E.g.f. of row o.g.f.s: [(1+t)*exp((1+t)*x) - (1+t+t*x)exp(x)]/t^2. (End)

O.g.f. for m-th row (m=n-2): [(1+x)^(m+2)-(1+(m+2)*x)]/x^2. - Tom Copeland, Apr 16 2014

Reverse T = [St2]*dP*[St1]- dP = [St2]*(exp(x*M)-I)*[St1]-(exp(x*M)-I) with top two rows of zeros removed, [St1]=padded A008275 just as [St2]=A048993=padded A008277, dP= A132440, M=A238385-I, and I=identity matrix. Cf. A238363. - Tom Copeland, Apr 26 2014

O.g.f. of column k (with k leading zeros): (x^k)/(1-x)^(k+1), k >= 2. - Wolfdieter Lang, Mar 20 2015

EXAMPLE

The triangle a(n, k) begins:

n\k 2 3 4 5 6 7 8 9 10 11 12 13

2: 1

3: 3 1

4: 6 4 1

5: 10 10 5 1

6: 15 20 15 6 1

7: 21 35 35 21 7 1

8: 28 56 70 56 28 8 1

9: 36 84 126 126 84 36 9 1

10: 45 120 210 252 210 120 45 10 1

11: 55 165 330 462 462 330 165 55 11 1

12: 66 220 495 792 924 792 495 220 66 12 1

13: 78 286 715 1287 1716 1716 1287 715 286 78 13 1

MATHEMATICA

t[n_, k_] := Binomial[n, k]; Table[ t[n, k], {n, 2, 13}, {k, 2, n}] // Flatten (* Robert G. Wilson v, Apr 16 2011 *)

PROG

(PARI) for(n=2, 10, for(k=2, n, print1(binomial(n, k), ", "))) \\ G. C. Greubel, May 15 2018

(Magma) /* As triangle */ [[Binomial(n, k): k in [2..n]]: n in [2..10]]; // G. C. Greubel, May 15 2018