oeis.org

A334450 - OEIS

9, 9, 9, 6, 7, 6, 5, 2, 7, 0, 7, 9, 6, 2, 6, 6, 6, 2, 0, 1, 8, 2, 4, 6, 1, 8, 0, 8, 7, 3, 0, 8, 3, 7, 0, 1, 5, 0, 0, 7, 5, 1, 5, 7, 4, 3, 7, 9, 5, 5, 4, 4, 3, 0, 5, 6, 8, 4, 3, 2, 8, 4, 0, 4, 2, 4, 9, 7, 5, 9, 8, 1, 9, 2, 1, 2, 1, 9, 1, 3, 2, 9, 9, 7, 0, 4, 0, 0, 3, 0, 2, 9, 1, 9, 3, 0, 4, 4, 5, 3, 7, 5, 2, 8, 3, 9

COMMENTS

In general, for s>0, Product_{k>=1} (1 + 1/A002144(k)^(2*s+1))/(1 - 1/A002144(k)^(2*s+1)) = Pi^(2*s+1) * A000364(s) * zeta(2*s+1) / ((2^(2*s+2) + 2) * (2*s)! * zeta(4*s+2)). - Dimitris Valianatos, May 01 2020

In general, for s>1, Product_{k>=1} (1 + 1/A002144(k)^s)/(1 - 1/A002144(k)^s) = (zeta(s, 1/4) - zeta(s, 3/4)) * zeta(s) / (2^s * (2^s + 1) * zeta(2*s)).

REFERENCES

B. C. Berndt, Ramanujan's notebook part IV, Springer-Verlag, 1994, p. 64-65.

EXAMPLE

0.999676527079626662018246180873083701500751574379554430568432840424975981921219...