A377070 - OEIS
1, 2, 3, 4, 5, 4, 6, 9, 7, 8, 9, 4, 10, 25, 11, 8, 12, 18, 27, 13, 4, 14, 49, 9, 15, 25, 16, 17, 8, 12, 18, 27, 19, 8, 20, 50, 125, 9, 21, 49, 4, 22, 121, 23, 16, 24, 36, 54, 81, 25, 4, 26, 169, 27, 8, 28, 98, 343, 29, 8, 12, 18, 20, 27, 30, 45, 50, 75, 125, 31
COMMENTS
Row n is a finite set of products of prime power factors p^k (i.e., p^k | n) such that Sum_{p|n} k = bigomega(n), that is, numbers m such that rad(m) | n and m has the same number of prime factors with repetition than does n.
LINKS
Michael De Vlieger, Diagrams of select a(n) illustrating rank omega(n)-1 simplexes formed by the arrangement of terms in row n by prime power decomposition.
FORMULA
EXAMPLE
Triangle begins:
n row n of this sequence:
-------------------------------------------
1: {1}
2: {2}
3: {3}
4: {4}
5: {5}
6: {4, 6, 9}
7: {7}
8: {8}
9: {9}
10: {4, 10, 25}
... (Select rows appear below)
12: {8, 12, 18, 27}
14: {4, 14, 49}
15: {9, 15, 25}
18: {8, 12, 18, 27}
20: {8, 20, 50, 125}
24: {16, 24, 36, 54, 81}
30: {8, 12, 18, 20, 27, 30, 45, 50, 75, 125}
42: {8, 12, 18, 27, 28, 42, 63, 98, 147, 343}
60: {16, 24, 36, 40, 54, 60, 81, 90, 100, 135, 150, 225, 250, 375, 625}.
.
Diagrams of the rank omega(n)-1 simplexes created by row n of this sequence for select n, ordering k in row n by prime decomposition. The number k = n appears in brackets:
Rank 3:
n = 30: n = 42:
8 8
/ \ / \
12 -- 20 12 -- 28
/ \ / \ / \ / \
18 --[30]-- 50 18 --[42]-- 98
/ \ / \ / \ / \ / \ / \
27 -- 45 -- 75 -- 125 27 -- 63 --147 -- 343
.
n = 60: 16
/ \
24 -- 40
/ \ / \
36 --[60]-- 50
/ \ / \ / \
54 -- 90 -- 75 --125
/ \ / \ / \ / \
81 --150 --135 --375 --625
.
Rank 4:
n = 210:
16
40
24 56
100
60 140
36 84 196
250
150 350
90 [210] 490
54 126 294 686
625
375 875
225 525 1225
135 315 735 1715
81 189 441 1029 2401
MATHEMATICA
rad[x_] := rad[x] = Times @@ FactorInteger[x][[All, 1]];
Table[k = PrimeOmega[n]; Select[Range[n^PrimeNu[n]], Divisible[n, rad[#]] && PrimeOmega[#] == k &], {n, 30}]