web.archive.org

carbohydrate: Definition and Much More from Answers.com

  • ️Invalid Date

Concept

Carbohydrates are nutrients, along with proteins and other types of chemical compounds, but they are much more than that. In addition to sugars, of which there are many more varieties than ordinary sucrose, or table sugar, carbohydrates appear in the form of starches and cellulose. As such, they are the structural materials of which plants are made. Carbohydrates are produced by one of the most complex, vital, and amazing processes in the physical world: photosynthesis. Because they are an integral part of plant life, it is no wonder that carbohydrates are in most fruits and vegetables. And though they are not a dietary requirement in the way that vitamins or essential amino acids are, it is difficult to eat without ingesting some carbohydrates, which are excellent sources of quick-burning energy. Not all carbohydrates are of equal nutritional value, however: in general, the ones created by nature are good for the body, whereas those produced by human intervention—some forms of pasta and most varieties of bread, white rice, crackers, cookies, and so forth—are much less beneficial.

How It Works

What Carbohydrates Are

Carbohydrates are naturally occurring compounds that consist of carbon, hydrogen, and oxygen, and are produced by green plants in the process of undergoing photosynthesis. In simple terms, photosynthesis is the biological conversion of light energy (that is, electromagnetic energy) from the Sun to chemical energy in plants. It is an extremely complex process, and a thorough treatment of it involves a great deal of technical terminology. Although we discuss the fundamentals of photosynthesis later in this essay, we do so only in the most cursory fashion.

Photosynthesis involves the conversion of carbon dioxide and water to sugars, which, along with starches and cellulose, are some of the more well known varieties of carbohydrate. Sugars can be defined as any of a number of water-soluble compounds, of varying sweetness. (What we think of as sugar—that is, table sugar—is actually sucrose, discussed later.) Starches are complex carbohydrates without taste or odor, which are granular or powdery in physical form. Cellulose is a polysaccharide, made from units of glucose, that constitutes the principal part of the cell walls of plants and is found naturally in fibrous materials, such as cotton. Commercially, it is a raw material for such manufactured goods as paper, cellophane, and rayon.

Monosaccharides

The preceding definitions contain several words that also must be defined. Carbohydrates are made up of building blocks called monosaccharides, the simplest type of carbohydrate. Found in grapes and other fruits and also in honey, they can be broken down chemically into their constituent elements, but there is no carbohydrate more chemically simple than a monosaccharide. Hence, they are also known as simple sugars or simple carbohydrates.

Examples of simple sugars include glucose, which is sweet, colorless, and water-soluble and appears widely in nature. Glucose, also known as dextrose, grape sugar, and corn sugar, is the principal form in which carbohydrates are assimilated, or taken in, by animals. Other monosaccharides include fructose, or fruit sugar, and galactose, which is less soluble and sweet than glucose and usually appears in combination with other simple sugars rather than by itself. Glucose, fructose, and galactose are isomers, meaning that they have the same chemical formula (C6H12O6), but different chemical structures and therefore different chemical properties.

Disaccharides

When two monosaccharide molecules chemically bond with each other, the result is one of three general types of complex sugar: a disaccharide, oligosaccharide, or polysaccharide. Disaccharides, or double sugars, are composed of two monosaccharides. By far the most well known example of a disaccharide is sucrose, or table sugar, which is formed from the bonding of a glucose molecule with a molecule of fructose. Sugar beets and cane sugar provide the principal natural sources of sucrose, which the average American is most likely to encounter in refined form as white, brown, or powdered sugar.

Another disaccharide is lactose, or milk sugar, the only type of sugar that is produced from animal (i.e., mammal) rather than vegetable sources. Maltose, a fermentable sugar typically formed from starch by the action of the enzyme amylase, is also a disaccharide. Sucrose, lactose, and maltose are all isomers, with the formula C12H22O11.

Oligosaccharides and Polysaccharides

The definitions of oligosaccharide and polysaccharide are so close as to be confusing. An oligosaccharide is sometimes defined as a carbohydrate containing a known, small number of monosaccharide units, while a polysaccharide is a carbohydrate composed of two or more monosaccharides. In theory, this means practically the same thing, but in practice, an oligosaccharide contains 3-6 monosaccharide units, whereas a polysaccharide is composed of more than six.

Oligosaccharides are found rarely in nature, though a few plant forms have been discovered. Far more common are polysaccharides ("many sugars"), which account for the vast majority of carbohydrate types found in nature. (See Where to Learn More for the Nomenclature of Carbohydrates Web site, operated by the Department of Chemistry at Queen Mary College, University of London. A glance at the site will suggest something about the many, many varieties of carbohydrates.)

Polysaccharides may be very large, consisting of as many as 10,000 monosaccharide units strung together. Given this vast range of sizes, it should not be surprising that there are hundreds of polysaccharide types, which differ from one another in terms of size, complexity, and chemical makeup. Cellulose itself is a polysaccharide, the most common variety known, composed of numerous glucose units joined to one another. Starch and glycogen are also glucose polysaccharides. The first of these polysaccharides is found primarily in the stems, roots, and seeds of plants. As for glycogen, this is the most common form in which carbohydrates are stored in animal tissues, particularly muscle and liver tissues.

Photosynthesis

Photosynthesis, as we noted earlier, is the biological conversion of light or electromagnetic energy from the Sun into chemical energy. It occurs in green plants, algae, and some types of bacteria and requires a series of biochemical reactions. Higher plants have structures called chloroplasts, which contain a dark green or blue-black chemical known as chlorophyll. Light absorption by chlorophyll catalyzes, or speeds up, the process of photosynthesis. (A catalyst is a substance that accelerates a chemical reaction without participating in it.)

In photosynthesis, carbon dioxide and water react with each other in the presence of light and chlorophyll to produce a simple carbohydrate and oxygen. This is one of those statements in the realm of science that at first glance sounds a bit dry and boring but which, in fact, encompasses one of life's great mysteries—a concept far more captivating than any number of imaginary, fantastic, or pseudoscientific ideas one could concoct. Photosynthesis is one of the most essential life-sustaining processes, making possible the nutrition of all things and the respiration of animals and other oxygen-breathing organisms.

In photosynthesis, plants take a waste product of human and animal respiration and, through a series of chemical reactions, produce both food and oxygen. The food gives nourishment to the plant, which, unlike an animal, is capable of producing its own nutrition from its own body with the aid only of sunlight and a few chemical compounds. Later, when the plant is eaten by an animal or when it dies and is consumed by bacteria and other decomposers, it will pass on its carbohydrate content to other creatures. (See Food Webs for more about plants as autotrophs and the relationships among primary producers, consumers, and decomposers.)

A carbohydrate is not the only useful product of the photosynthetic reaction. The reaction produces an extremely important waste by-product—waste, that is, from the viewpoint of the plant, which has no need of oxygen. Yet the oxygen it generates in photosynthesis makes life possible for animals and many single-cell life-forms, which depend on oxygen for respiration.

The Photosynthesis Equation

The photosynthesis reaction can be represented thus as a chemical equation:

Note that the arrow indicates that a chemical reaction has taken place with the assistance of light and chlorophyll. In the same way, heat from a Bunsen burner may be required to initiate some other chemical reaction, without actually being part of the reactants to the left of the arrow. In the present equation, neither the added energy nor the catalyst appears on the left side, because they are not actual physical participants consumed in the reaction, as the carbon dioxide and water are. The catalyst does not participate in the reaction, whereas the energy, while it is consumed in the reaction, is not a material or physical participant—that is, it is energy, not matter.

One might also wonder why the equation shows six molecules of carbon dioxide and six of water. Why not one of each, for the sake of simplicity? To produce a balanced chemical equation, in which the same number of atoms appears on either side of the arrow, it is necessary to show six carbon dioxide molecules reacting with six water molecules to produce six oxygen molecules and a single glucose molecule. Thus, both sides contain six atoms of carbon, 12 of hydrogen, and 18 of oxygen.

The equation gives the impression that photosynthesis is a simple, one-step process, but nothing could be further from the truth. In fact, the process occurs one small step at a time. It also involves many, many intricacies and aspects that require the introduction of scores of new terms and ideas. Such a discussion is beyond the scope of the present essay, and therefore the reader is encouraged to consult a reliable textbook for further information on the details of photosynthesis.

Real-Life Applications

Fruits and Vegetables

One of the principal ways in which people obtain carbohydrates from their diets is through fruits and vegetables. The distinctions between these two are based not on science but on custom. Traditionally, vegetables are plant tissues (which may be sweet, but usually are not), that are eaten as a substantial part of a meal's main course. By contrast, fruits are almost always sweet and are eaten as desserts or snacks. It so happens, too, that people are much more likely to cook vegetables than they are fruits, though vegetables are nutritionally best when eaten raw.

Fruits and vegetables are heavy in carbohydrate content, in the form of edible sugars and starches but also inedible cellulose, whose role in the diet will be examined later. In a fresh vegetable, for instance, water may account for about 70% of the volume, and proteins, fat, vitamins, and minerals may make up a little more than 5%, with nearly 25% taken up either by edible sugars and starches or by inedible cellulose fiber.

The Example of the Artichoke

Every fruit or vegetable one could conceivably eat—and there are hundreds—contains both edible carbohydrates, which are a good source of energy, and inedible ones, which provide fiber. An excellent example of this edible-inedible mixture is the globe, or French, artichoke—Cynara scolymus, a member of the family Asteraceae, which includes the sunflower. The globe artichoke (not to be confused with the Jerusalem artichoke, or Helianthus tuberosus) appears in the form of an inflorescence, or a cluster of flowers. This vegetable usually is steamed, and the bracts, or leaves, are dipped in butter or another sauce.

Not nearly all of the bract is edible, however; to consume the starchy "meat" of the artichoke, which has a distinctive, nutty flavor, one must draw the leaves between the teeth. Most of the artichoke's best parts are thus hidden away, and the best part of all—the tender and fully edible "heart"—is enclosed beneath an intimidating shield of slender thistles. Whoever first discovered that an artichoke could be eaten must have been a brave person indeed, and whoever ascertained how to eat it was a wise one. Thanks to these adventurous souls, the world's cuisine has an unforgettable delicacy.

The Carbohydrate Content of Vegetables

In terms of edible carbohydrate content, the artichoke has a low percentage. A few vegetables have a smaller percentage of carbohydrates, whereas others have vastly higher percentages, as the list shown here illustrates. In general, it seems that the carbohydrate content of vegetables (and in each of these cases we are talking about edible carbohydrates, not cellulose) is in the range of about 5-10%, somewhere around 20%, or a very high 60-80%. There does not seem to be a great deal of variation in these ranges.

Water, Protein, and Carbohydrate Content of Selected Vegetables:

  • Artichoke: 85% water, 2.9% protein, 10.6% carbohydrate
  • Beets, red: 87.3% water, 1.6% protein, 9.9% carbohydrate
  • Celery: 94.1% water, 0.9% protein, 3.9% carbohydrate
  • Corn: 13.8% water, 8.9% protein, 72.2% carbohydrate
  • Lima bean: 10.3% water, 20.4% protein, 64% carbohydrate
  • Potato: 79.8% water, 2.1% protein, 17.1% carbohydrate
  • Red pepper: 74.3% water, 3.7% protein, 18.8% carbohydrate
  • Summer squash: 94% water, 1.1% protein, 4.2% carbohydrate

Starches

Not all the carbohydrates in these vegetables are the same. Some carbohydrates appear in the form of sugar and others in the form of inedible cellulose, discussed in the next section. In addition, some vegetables are high in starch content. As we noted earlier, starch is white and granular, and, unlike sugars, starches cannot be dissolved in cold water, alcohol, or other liquids that normally act as solvents.

Manufactured in plants' leaves, starch is the product of excess glucose produced during photosynthesis, and it provides the plant with an emergency food supply stored in the chloroplasts. Vegetables high in starch content are products of plants whose starchy portions happen to be the portions we eat. For example, there is the tuber, or underground bulb, of the potato as well as the seeds of corn, wheat, and rice. Thus, all of these vegetables, and foods derived from them, are heavy in the starch form of carbohydrate.

In addition to their role in the human diet, starches from corn, wheat, tapioca, and potatoes are put to numerous commercial uses. Because of its ability to thicken liquids and harden solids, starch is applied in products (e.g., cornstarch) that act as thickening agents, both for foods and nonfood items. Starch also is utilized heavily in various phases of the garment and garment-care industries to impart stiffness to fabrics. In the manufacture of paper, starch is used to increase the paper's strength. It also is employed in the production of cardboard and paper bags.

Cellulose

One of the aspects of fruits and vegetables to which we have alluded several times is the high content of inedible material, or cellulose. (Actually, it is edible—just not digestible.) A substance found in the cell walls of plants, cellulose is chemically like starch but even more rigid, and this property makes it an excellent substance for imparting strength to plant bodies. Animals do not have rigid, walled cells, but plants do. The heavy cellulose content in plants' cell walls gives them their erect, rigid form; in other words, without cellulose, plants might be limp and partly formless. Like human bone, plant cell walls are composed of fibrils (small filaments or fibers) that include numerous polysaccharides and proteins. One of these polysaccharides in cell walls is pectin, a substance that, when heated, forms a gel and is used by cooks in making jellies and jams. Some trees have a secondary cell wall over the primary one, containing yet another polysaccharide called lignin. Lignin makes the tree even more rigid, penetrable only with sharp axes.

Cellulose in Digestion

As we have noted, cellulose is abundant in fruits and vegetables, yet humans lack the enzyme necessary to digest it. Termites, cows, koalas, and horses all digest cellulose, but even these animals and insect do not have an enzyme that digests this material. Instead, they harbor microbes in their guts that can do the digesting for them. (This is an example of symbiotic mutualism, a mutually beneficial relationship between organisms, discussed in Symbiosis.)

Cows are ruminants, or animals that chew their cud—that is, food regurgitated to be chewed again. Ruminants have several stomachs, or several stomach compartments, that break down plant material with the help of enzymes and bacteria. The partially digested material then is regurgitated into the mouth, where it is chewed to break the material down even further. (If you have ever watched cows in a pasture, you have probably observed them calmly chewing their cud.) The digestion of cellulose by bacteria in the stomachs of ruminants is anaerobic, meaning that the process does not require oxygen. One of the by-products of this anaerobic process is methane gas, which is foul smelling, flammable, and toxic. Ruminants give off large amounts of methane daily, which has some environmentalists alarmed, since cow-borne methane may contribute to the destruction of the ozone high in Earth's stratosphere.

Alhough cellulose is indigestible by humans, it is an important dietary component in that it aids in digestion. Sometimes called fiber or roughage, cellulose helps give food bulk as it moves through the digestive system and aids the body in pushing out foods and wastes. This is particularly important inasmuch as it helps make possible regular bowel movements, thus ridding the body of wastes and lowering the risk of colon cancer. (See Digestion for more about the digestive and excretory processes.)

Overall Carbohydrate Nutrition

A diet high in cellulose content can be beneficial for the reasons we have noted. Likewise, a healthy diet includes carbohydrate nutrients, but only under certain conditions. First of all, it should be understood that the human body does not have an essential need for carbohydrates in and of themselves—in other words, there are no "essential" carbohydrates, as there are essential amino acids or fatty acids.

On the other hand, it is very important to eat fresh fruits and vegetables, which, as we have seen, are heavy in carbohydrate content. Their importance has little do with their nutritional carbohydrate content, but rather with the vitamins, minerals, proteins, and dietary fiber that they contain. For these healthy carbohydrates, it is best to eat them in as natural a form as possible: for example, eat the whole orange, rather than just squeezing out the juice and throwing away the pulp. Also, raw spinach and other vegetables contain far more vitamins and minerals than the cooked versions.

Sugar Highs and Fat Storage

Carbohydrates can give people a short burst of energy, and this is why athletes may "bulk up on carbs" right before competition. But if the carbohydrates are not quickly burned off, they eventually will be stored as fat. This is the case even with healthy carbohydrates, but the situation is much worse with junk-food carbohydrates, which offer only empty calories stripped of vitamin and mineral content. One example is a particular brand of candy bar that, over the years, has been promoted in commercials as a means of obtaining a quick burst of energy. In fact, this and all other white-sugar-based candies give only a quick "sugar high," followed almost immediately by a much lower energy "low"—and in the long run by the accumulation of fat.

Fat is the only form in which the body can store carbohydrates for the long haul, meaning that the "fat-free" stickers on many a package of cookies or cakes in the supermarket are as meaningless as the calories themselves are empty. Carbohydrate consumption is one of the main reasons why the average American is so overweight. With an in active lifestyle, as is typical of most adults in modern life, all those French fries, cookies, dinner rolls, and so on have no place to go but to the fat-storage centers in the abdomen, buttocks, and thighs. Of all carbohydrate-containing foods, the least fattening, of course, are natural nonstarches, such as fruits and vegetables (assuming they are not cooked in fat). Next on the least-fattening list are starchy natural foods, such as potatoes, and most fattening of all are processed starches, whether they come in the form of rice, wheat, or potato products.

Why You Can Eat More Carbohydrates Than Proteins

One of the biggest problems with starches is that the body can consume so many of them compared with proteins and fats. How many times have you eaten a huge plate of mashed potatoes or rice, mountains of fries, or piece after piece of bread? All of us have done it: with carbohydrates, and particularly starches, it seems we can never get enough. But how many times have you eaten a huge plate of nothing but chicken, steak, or eggs? Probably not very often, and if you have tried to eat too much of these protein-heavy foods at one time, you most likely started to get sick.

The reason is that when you eat protein or fat, it triggers the release of a hormone called cholecystokinin (CCK) in the small intestine. CCK tells the brain, in effect, that the body is getting fed, and if enough CCK is released, it signals the brain that the body has received enough food. If one continues to consume proteins or fats beyond that point, nausea is likely to follow. Carbohydrates, on the other hand, do not cause a release of CCK; only when they enter the bloodstream do they finally send a signal to the brain that the body is satisfied. By then, most of us have piled on more mashed potatoes, which are destined to take their place in the body as fat stores.

Where to Learn More

Carbohydrates. Hardy Research Group, Department of Chemistry, University of Akron (Web site). <http://ull.chemistry.uakron.edu/genobc/Chapter_17/>.

Dey, P. M., and R. A. Dixon. Biochemistry of Storage Carbohydrates in Green Plants. Orlando, FL: Academic Press, 1985.

Carpi, Anthony. "Food Chemistry: Carbohydrates." Visionlearning.com (Web site). <http://www.vision learning.com/library/science/chemistry-2/CHE2.5-carbohydrates.htm>.

Food Resource, Oregon State University (Web site). <http://food.orst.edu/>.

Kennedy, Ron. "Carbohydrates in Nutrition." The Doctors' Medical Library (Web site). <http://www.medicallibrary.net/sites/carbohydrates_in_nutrition.html>.

"Nomenclature of Carbohydrates." Queen Mary College, University of London, Department of Chemistry (Web site). <http://www.chem.qmw.ac.uk/iupac/2carb/>.

Snyder, Carl H. The Extraordinary Chemistry of Ordinary Things. New York: John Wiley and Sons, 1998.

Spallholz, Julian E. Nutrition, Chemistry, and Biology. Englewood Cliffs, NJ: Prentice-Hall, 1989.

Wiley, T. S., and Bent Formby. Lights Out: Sleep, Sugar, and Survival. New York: Pocket Books, 2000.


Plants manufacture and store carbohydrates as their main source of energy through photosynthesis. Once consumed, these organic compounds can be digested, absorbed, and metabolized, supplying humans or animals with energy. Carbohydrates provide roughly half of the total caloric intake of the average human diet. These calories may be used immediately for energy metabolism or may be transformed and stored as glycogen or fat to be used as an energy source as demanded. Dietary carbohydrates are comprised of a wide array of compounds ranging from the simple oneor two-unit sugars to the long chain starches, glycogen and cellulose. Carbohydrates can be classified as monosaccharides, di-and oligosaccharides, and polysaccharides.

Table 1

Carbohydrate classification
Classification Number of sugar units**Examples
Monosaccharides 1 Glucose, galactose, fructose
Disaccharides 2 Sucrose, lactose, maltose
Oligosaccharides 2–10 Includes the disaccharides
Polysaccharides > 10 Glycogen, starch, cellulose
**A "sugar unit" is one monosaccharide—each unit is not necessarily the same monosaccharide. For example, sucrose consists of one glucose uni and one fructose unit.

Monosaccharides, often referred to as simple sugars, are the simplest form of carbohydrates and are seldom found free in nature. The three that can be absorbed by the human body include glucose, galactose, and fructose. Glucose is the most abundant of the monosaccharides and the most important nutritionally. It is the repeating monosaccharide unit in starch, glycogen, and cellulose, and is found in all edible disaccharides.

Oligosaccharides are short chains of monosaccharide units that are joined by glycosidic bonds. They generally have between two to ten units, with the disaccharides, those chains containing two units, being the most abundant. The most common disaccharides include:

 Sucrose (from table, cane, and beet sugars), consisting of glucose and fructose
Lactose (from milk sugar), consisting of glucose and galactose
Maltose (from malt sugar), consisting of two glucose units

Polysaccharides are long chains of monosaccharide units. The major polysaccharides include the digestible forms (glycogen and starch) and nondigestible forms (cellulose, hemicellulose, lignin, pectin, and gums).

Starch is the most common digestible polysaccharide found in plants. It can be found in two forms—amylose and amylopectin. Amylose is a linear, unbranched molecule that is bound solely by a-1,4 glycosidic bonds. Amylopectin, which makes up the greatest percent of the total starch content, is branched with a-1,6 bonds at the branch points.

Glycogen is the major storage form of carbohydrates in animals, found primarily in the liver and skeletal muscle. When energy intake exceeds energy expenditure, excess calories from fat, protein, and carbohydrate can be used to form glycogen. It is made up of repeating glucose units and is highly branched. During times of fasting or in between meals, these chains can be broken down to single glucose units and used as an energy source for the body. Although found in animal tissue, animal products do not contain large amounts of glycogen because it is depleted at the time of slaughter due to stress hormones.

Cellulose is the major component of cell walls in plants. Just as starch and glycogen, it too is made up of repeating glucose molecules. However, the glycosidic bonds connecting the units are b-1,4. These bonds are resistant to mammalian digestive enzymes rendering cellulose, and other substances containing these bonds, indigestible. Thus, cellulose is not considered to be a significant source of energy for the body. However, as a fiber, it is important for intestinal bacteria.

Since cellulose is a major part of the plant cell wall, it also encases some of the starch, preventing the digestive enzymes from reaching it and decreasing the digestibility of some raw foods such as potatoes and grains. Cooking causes the granules to swell and also softens and ruptures the cellulose wall, allowing the starch to be digested.

Dietary Fiber

Fiber can be classified as soluble and insoluble. Soluble fiber, which includes pectin and gums, dissolves in water to form a gel in the digestive tract. This increases the time the food is in the small intestine, thus increasing the chance of nutrients being absorbed. It is believed that soluble fiber plays a role in lowering blood LDL cholesterol. This could be due to the binding and increased excretion of fat and bile acid (a derivative of cholesterol) or other mechanisms not yet understood. Bacteria in the bowel can use fiber as a food source. These bacteria can degrade the fiber and release some components that can then be absorbed and used by the body. The increased nutrition for the bacteria can increase microbial growth, which can then lead to increased stool bulk, with little of the fiber actually found in the stool.

Insoluble fiber, including cellulose, hemicellulose, and lignin (a noncarbohydrate component of the cell wall that is often included as dietary fiber), absorbs water, thereby increasing the bulk and volume of the stool. It helps to speed the movement through the intestinal tract, preventing constipation, and is prescribed in the treatment of irritable bowel syndrome. It has also been shown that insoluble fibers bind fat-soluble carcinogens and remove them from the gastrointestinal tract, helping to decrease cancer risk.

Refined and processed foods have not only most of the fiber removed, but along with it many of the vitamins, minerals, and phytochemicals (chemicals found in plants believed to contain protective properties) that contribute to the health benefits of whole grain foods. The federal government's Dietary Guidelines for Americans encourage individuals to include whole grain foods in their diet to ensure adequate fiber to promote proper bowel function, as well as to receive other added health benefits.

Digestion, Absorption, and Transportation

In order for carbohydrates to be absorbed by the intestinal mucosal cells, they must first be converted into monosaccharides. The digestive process begins in the mouth with salivary a-amylase that partially breaks down starch by hydrolyzing some of the a-1,4 bonds. However, the digestion that takes place here is of little significance since food remains in the mouth for only a brief period, although this may differ depending on chewing time. The enzyme continues to work for a short time in the stomach until the pH is lowered due to hydrochloric acid that inhibits the enzyme.

Table 2

Examples of carbohydrate food sources
Monosaccharides
GlucoseFructoseGalactose
Fruit High-fructose corn syrup Milk
Vegetables Honey Milk products
Honey Fruit  
Disaccharides
SucroseLactoseMaltose
Table sugar Milk Beer
Maple sugar Milk products Malt liquor
Fruit    
Vegetables    
Honey    
Polysaccharides
Starch (rye, oats, wheat, rice, potatoes, legumes, cereals, bread)
Dietary Fiber
Soluble
PectinGums 
Fruits (apples, berries) Oats, barley  
Jams and jellies (additive) Ice cream (additive) Legumes  
Insoluble
CelluloseHemicelluloseLignin
Whole wheat foods Whole grains Fruit
Bran   Seeds
Leafy vegetables   Bran, wheat Vegetables

The bulk of carbohydrate digestion occurs in the small intestine by pancreatic a-amylase. The pH of the small intestines is increased due to the addition of bicarbonate and bile, allowing the enzyme activity to occur. Specific disaccharidases located on the intestinal mucosal cells help to further break down the carbohydrates into the monosaccharides: glucose, fructose, and galactose.

Once the carbohydrates have been broken down, the monosaccharides can be absorbed by the mucosal cells. Glucose and galactose enter by active transport, which requires energy as well as specific receptors and carriers. Fructose is absorbed by facilitated diffusion. Like active transport, facilitated diffusion requires a specific carrier, but instead of needing energy, it relies on the low levels of fructose inside the cell to "pull" the fructose inside. Once transported through the intestinal wall, the monosaccharides enter the blood through the capillaries and are carried to the portal circulation and then to the liver.

Metabolism of Carbohydrates

The liver is the major site of galactose and fructose metabolism, where they are taken up, converted to glucose derivatives, and either stored as liver glycogen or used for energy immediately when needed. Although glucose is metabolized extensively in the liver, unlike galactose and fructose, it is also passed into the blood supply to be used by other tissues. Tissues like skeletal muscle and adipose tissue depend on insulin for glucose uptake, whereas the brain and liver do not. This dependence on insulin becomes a problem for diabetics who either cannot make insulin (IDDM) or are resistent to insulin (NIDDM). For individuals left untreated, dietary carbohydrates cause glucose levels to rise, resulting in hyperglycemia, which will lead to serious consequences if steps are not taken to correct it.

Once in the tissues, the fate of glucose depends on the energy demands of the body. Glucose can be metabolized through the glycolysis pathway to pyruvate where it is either converted to lactate or completely oxidized to CO2, H2O, and energy. Liver and skeletal muscle can convert excess glucose to glycogen through a pathway known as glycogenesis. The glycogen is stored after meals to be used as an energy source when energy demands are higher than intake. At this time the glycogen is broken down into individual glucose units, a process known as glycogenolysis, and the glucose can be metabolized further. Excess carbohydrates also can be used as a substrate for fat synthesis.

Carbohydrates are an essential part of a healthy diet. They provide an easily available energy source, are an important vehicle for micronutrients and phytochemicals, help to maintain adequate blood glucose, and are important in maintaining the integrity and function of the gastrointestinal tract. Table 2 contains examples of foods that contain the various types of carbohydrates.

Starch

Starch from plants makes up about half of our dietary carbohydrates. Starch molecules can aggregate to form granules that differ by size and shape depending on the source of the starch, for example, corn, potato, and manioc. Although there is no difference in the nutritional value between the starches since all cooked starches are broken down in the body into glucose molecules, they do differ by characteristics such as solubility, flavor, and thickening power. Because of these characteristics, starch is often removed from the source to use commercially. For example, the starch can be removed from tubers such as potatoes and manioc (also known as cassava) through a wet milling process, or in the case of manioc, through leaching and drying. The potato starch is often used as a thickener or instead of cornstarch in recipes, while manioc is best known as tapioca.

Bibliography

Ettinger, Susan. "Macronutrients: Carbohydrates, Proteins and Lipids." In Krause's Food, Nutrition, and Diet Therapy, edited Kathleen L. Mahan and Sylvia Escott-Stump. 10th ed. Philadelphia, Pa.: W. B. Saunders, 2000.

FAO/WHO. Carbohydrates in Human Nutrition: Report of a JointFAO/WHO Expert Consultation, Rome, 14–18 April 1997. Rome: World Health Organization, Food and Agriculture Organization of the United Nations, 1998.

Guthrie, Joanne, and Joan Morton. "Food Sources of Added Sweetners in the Diets of Americans." Journal of the American Dietetic Association 100 (2000): 43–48, 51.

Kiens, B., and E. A. Richter. "Types of Carbohydrates in an Ordinary Diet Affect Insulin Action and Muscle Substrates in Humans." American Journal of Clinical Nutrition. 63 (1996): 47–53.

Macdonald, I. A. "Carbohydrate as a Nutrient in Adults: Range of Acceptable Intakes." European Journal of Clinical Nutrition. 53 (1999): S101–S106.

—Debra Coward McKenzie Rachel K. Johnson