web.archive.org

Rice distribution: Information from Answers.com

Results for Rice distribution

Rice
Probability density function
Rice probability density functions σ=1.0
Rice probability density functions for various v   with σ=1.
Rice probability density functions σ=0.25
Rice probability density functions for various v   with σ=0.25.
Cumulative distribution function
Rice cumulative density functions σ=1.0
Rice cumulative density functions for various v   with σ=1.
Rice cumulative density functions σ=0.25
Rice cumulative density functions for various v   with σ=0.25.
Parameters v\ge 0\,
\sigma\ge 0\,
Support x\in [0;\infty)
Probability density function (pdf) \frac{x}{\sigma^2}\exp\left(\frac{-(x^2+v^2)} {2\sigma^2}\right)I_0\left(\frac{xv}{\sigma^2}\right)
Cumulative distribution function (cdf)
Mean \sigma  \sqrt{\pi/2}\,\,L_{1/2}(-v^2/2\sigma^2)
Median
Mode
Variance 2\sigma^2+v^2-\frac{\pi\sigma^2}{2}L_{1/2}^2\left(\frac{-v^2}{2\sigma^2}\right)
Skewness (complicated)
Excess kurtosis (complicated)
Entropy
Moment-generating function (mgf)
Characteristic function

In probability theory and statistics, the Rice distribution, named after Stephen O. Rice, is a continuous probability distribution.

Characterization

The probability density function is:

f(x|v,\sigma)=\,
\frac{x}{\sigma^2}\exp\left(\frac{-(x^2+v^2)} {2\sigma^2}\right)I_0\left(\frac{xv}{\sigma^2}\right)

where I0(z) is the modified Bessel function of the first kind with order zero. When v = 0, the distribution reduces to a Rayleigh distribution.

Properties

Moments

The first few raw moments are:

\mu_1=  \sigma  \sqrt{\pi/2}\,\,L_{1/2}(-v^2/2\sigma^2)
\mu_2= 2\sigma^2+v^2\,
\mu_3= 3\sigma^3\sqrt{\pi/2}\,\,L_{3/2}(-v^2/2\sigma^2)
\mu_4= 8\sigma^4+8\sigma^2v^2+v^4\,
\mu_5=15\sigma^5\sqrt{\pi/2}\,\,L_{5/2}(-v^2/2\sigma^2)
\mu_6=48\sigma^6+72\sigma^4v^2+18\sigma^2v^4+v^6\,
L_\nu(x)=L_\nu^0(x)=M(-\nu,1,x)=\,_1F_1(-\nu;1;x)

where, Lν(x) denotes a Laguerre polynomial.

For the case ν = 1/2:

L_{1/2}(x)=\,_1F_1\left( -\frac{1}{2};1;x\right)
=e^{x/2} \left[\left(1-x\right)I_0\left(\frac{-x}{2}\right) -xI_1\left(\frac{-x}{2}\right) \right]

Generally the moments are given by

\mu_k=s^k2^{k/2}\,\Gamma(1\!+\!k/2)\,L_{k/2}(-v^2/2\sigma^2), \,

where s = σ1/2.

When k is even, the moments become actual polynomials in σ and v.

Related distributions

Limiting cases

For large values of the argument, the Laguerre polynomial becomes (see Abramowitz and Stegun §13.5.1)

\lim_{x\rightarrow -\infty}L_\nu(x)=\frac{|x|^\nu}{\Gamma(1+\nu)}.

It is seen that as v becomes large or σ becomes small the mean becomes v and the variance becomes σ2.

See also

External links

References

  • Rice, S. O., Mathematical Analysis of Random Noise. Bell System Technical Journal 24 (1945) 46-156.
  • Proakis, J., Digital Communications, McGraw-Hill, 2000.
Image:Bvn-small.png Probability distributions []
Univariate Multivariate
Discrete: BenfordBernoullibinomialBoltzmanncategoricalcompound Poissondiscrete phase-typedegenerateGauss-Kuzmingeometrichypergeometriclogarithmicnegative binomialparabolic fractalPoissonRademacherSkellamuniformYule-SimonzetaZipfZipf-Mandelbrot Ewensmultinomialmultivariate Polya
Continuous: BetaBeta primeCauchychi-squareDirac delta functionCoxianErlangexponentialexponential powerFfadingFermi-DiracFisher's zFisher-TippettGammageneralized extreme valuegeneralized hyperbolicgeneralized inverse GaussianHalf-logisticHotelling's T-squarehyperbolic secanthyper-exponentialhypoexponentialinverse chi-square (scaled inverse chi-square) • inverse Gaussianinverse gamma (scaled inverse gamma) • KumaraswamyLandauLaplaceLévyLévy skew alpha-stablelogisticlog-normalMaxwell-BoltzmannMaxwell speedNakagaminormal (Gaussian)normal-gammanormal inverse GaussianParetoPearsonphase-typepolarraised cosineRayleighrelativistic Breit-WignerRiceshifted GompertzStudent's ttriangulartruncated normaltype-1 Gumbeltype-2 GumbeluniformVariance-GammaVoigtvon MisesWeibullWigner semicircleWilks' lambda DirichletGeneralized Dirichlet distribution . inverse-WishartKentmatrix normalmultivariate normalmultivariate Studentvon Mises-FisherWigner quasiWishart
Miscellaneous: bimodalCantorconditionalequilibriumexponential familyInfinite divisibility (probability)location-scale familymarginalmaximum entropyposteriorpriorquasisamplingsingular

This entry is from Wikipedia, the leading user-contributed encyclopedia. It may not have been reviewed by professional editors (see full disclaimer)

Best of the Web:

Rice distribution

Some good "Rice distribution" pages on the web:


Math
mathworld.wolfram.com
 

Join the WikiAnswers Q&A; community. Post a question or answer questions about "Rice distribution" at WikiAnswers.

Search for answers directly from your browser with the FREE Answers.com Toolbar!  
Click here to download now. 

Get Answers your way! Check out all our free tools and products.