web.archive.org

set: Definition, Synonyms and Much More from Answers.com

  • ️Wed Jul 01 2015

This article is about mathematical sets. For other uses, see Set (disambiguation).

This article gives a basic introduction to what mathematicians call "intuitive" or "naive" set theory; for a more detailed account see Naive set theory. For a rigorous modern axiomatic treatment of sets, see Axiomatic set theory.

In mathematics, a set can be thought of as any collection of distinct objects considered as a whole. Although this appears to be a simple idea, sets are one of the most fundamental concepts in modern mathematics. The study of the structure of possible sets, set theory, is rich and ongoing. Having only been invented at the end of the 19th century, set theory is now a ubiquitous part of mathematics education, being introduced from primary school in many countries. Set theory can be viewed as the foundation upon which nearly all of mathematics can be derived.

The intersection of two sets is made up of the objects contained in both sets, shown in a Venn diagram.

Enlarge

The intersection of two sets is made up of the objects contained in both sets, shown in a Venn diagram.

At the beginning of his Beiträge zur Begründung der transfiniten Mengenlehre, Georg Cantor, the principal creator of set theory, gave the following definition of a set:[1]

By a "set" we mean any collection M into a whole of definite, distinct objects m (which are called the "elements" of M) of our perception [Anschauung] or of our thought.

The elements of a set, also called its members, can be anything: numbers, people, letters of the alphabet, other sets, and so on. Sets are conventionally denoted with capital letters. The statement that sets A and B are equal means that they have precisely the same members (i.e., every member of A is also a member of B and vice versa).

Unlike a multiset, every element of a set must be unique; no two members may be identical. All set operations preserve the property that each element of the set is unique. The order in which the elements of a set are listed is irrelevant, unlike a sequence or tuple.

Describing sets

There are two ways of describing, or specifying the members of, a set. One way is by intensional definition, using a rule or semantic description. See this example:

A is the set whose members are the first four positive integers.
B is the set of colors of the French flag.

The second way is by extension, that is, listing each member of the set. An extensional definition is notated by enclosing the list of members in braces:

C = {4, 2, 1, 3}
D = {blue, white, red}

The order in which the elements of a set are listed in an extensional definition is irrelevant, as are any repetitions in the list. For example,

{6, 11} = {11, 6} = {11, 11, 6, 11}

are equivalent, because the extensional specification means merely that each of the elements listed is a member of the set.

For sets with many elements, the enumeration of members can be abbreviated. For instance, the set of the first thousand positive whole numbers may be specified extensionally as:

{1, 2, 3, ..., 1000},

where the ellipsis ("...") indicates that the list continues in the obvious way. Ellipses may also be used where sets have infinitely many members. Thus the set of positive even numbers can be written as {2, 4, 6, 8, ... }.

The notation with braces may also be used in an intensional specification of a set. In this usage, the braces have the meaning "the set of all ..." So E = {playing-card suits} is the set whose four members are ♠, ♦, ♥, and ♣. A more general form of this is set-builder notation, through which, for instance, the set F of the twenty smallest integers that are four less than perfect squares can be denoted:

F = {n2 – 4 : n is an integer; and 0 ≤ n ≤ 19}

In this notation, the colon (":") means "such that", and the description can be interpreted as "F is the set of all numbers of the form n2 – 4, such that n is a whole number in the range from 0 to 19 inclusive." Sometimes the vertical bar ("|") is used instead of the colon.

One often has the choice of specifying a set intensionally or extensionally. In the examples above, for instance, A = C and B = D.

Membership

If something is or is not an element of a particular set then this is symbolised by \in and \notin respectively. So, with respect to the sets defined above:

Cardinality

The cardinality |S| of a set S is "the number of members of S." For example, since the French flag has three colors, |B| = 3.

There is a set with no members and zero cardinality, which is called the empty set (or the null set) and is denoted by the symbol ø. For example, the set A of all three-sided squares has zero members (|A| = 0), and thus A = ø. Though, like the number zero, it may seem trivial, the empty set is quite important in mathematics. The existence of this set is one of the fundamental concepts of axiomatic set theory.

Some sets have infinite cardinality. The set N of natural numbers, for instance, is infinite. Some infinite cardinalities are greater than others. For instance, the set of real numbers has greater cardinality than the set of natural numbers. However, it can be shown that the cardinality of (which is to say, the number of points on) a straight line is the same as the cardinality of any segment of that line, of an entire plane, and indeed of any Euclidean space.

Subsets

If every member of set A is also a member of set B, then A is said to be a subset of B, written A \subseteq B (also pronounced A is contained in B). Equivalently, we can write B \supseteq A, read as B is a superset of A, B includes A, or B contains A. The relationship between sets established by \subseteq is called inclusion or containment.

If A is a subset of, but not equal to, B, then A is called a proper subset of B, written A \subsetneq B (A is a proper subset of B) or B \supsetneq A (B is proper superset of A).

Note that the expressions A\subset B and A\supset B are used differently by different authors; some authors use them to mean the same as A\subseteq B (respectively A\supseteq B), whereas other use them to mean the same as A\subsetneq B (respectively A\supsetneq B).

A is a subset of B

A is a subset of B

Example:

The empty set is a subset of every set and every set is a subset of itself:

  • \emptyset \subseteq A
  • A \subseteq A

Power set

The power set of a set S can be defined as the set of all subsets of S. This includes the subsets formed from the members of S and the empty set. If a finite set S has cardinality n then the power set of S has cardinality 2n. If S is an infinite (either countable or uncountable) set then the power set of S is always uncountable. The power set can be written as 2S.

As an example, the power set 2{1, 2, 3} of {1, 2, 3} is equal to the set {{1, 2, 3}, {1, 2}, {1, 3}, {2, 3}, {1}, {2}, {3}, ø}. The cardinality of the original set is 3, and that of the power set is eight, which is equal to two to the third. This relationship is one of the reasons for the terminology power set. Similarly, its notation is an example of a general convention providing notations for sets based on their cardinalities.

Special sets

There are some sets which hold great mathematical importance and are referred to with such regularity that they have acquired special names and notational conventions to identify them. One of these is the empty set. Many of these sets are represented using Blackboard bold typeface. Special sets of numbers include:

  • \mathbb{P}, denoting the set of all primes.
  • \mathbb{N}, denoting the set of all natural numbers. That is to say, \mathbb{N} = {1, 2, 3, ...}, or sometimes \mathbb{N} = {0, 1, 2, 3, ...}.
  • \mathbb{Z}, denoting the set of all integers (whether positive, negative or zero). So \mathbb{Z} = {..., -2, -1, 0, 1, 2, ...}.
  • \mathbb{Q}, denoting the set of all rational numbers (that is, the set of all proper and improper fractions). So, \mathbb{Q} = \left\{ \begin{matrix}\frac{a}{b} \end{matrix}: a,b \in \mathbb{Z}, b \neq 0\right\}. For example, \begin{matrix} \frac{1}{4} \end{matrix} \in \mathbb{Q} and \begin{matrix}\frac{11}{6} \end{matrix} \in \mathbb{Q}. All integers are in this set since every integer a can be expressed as the fraction \begin{matrix} \frac{a}{1} \end{matrix}.
  • \mathbb{R}, denoting the set of all real numbers. This set includes all rational numbers, together with all irrational numbers (that is, numbers which cannot be rewritten as fractions, such as π, e, and √2).
  • \mathbb{C}, denoting the set of all complex numbers.

Each of these sets of numbers has an infinite number of elements, and \mathbb{P} \subset \mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}. The primes are used less frequently than the others outside of number theory and related fields.

Basic operations

Unions

There are ways to construct new sets from existing ones. Two sets can be "added" together. The union of A and B, denoted by A U B, is the set of all things which are members of either A or B.

A union B

The union of A and B

Examples:

  • {1, 2} U {red, white} = {1, 2, red, white}
  • {1, 2, green} U {red, white, green} = {1, 2, red, white, green}
  • {1, 2} U {1, 2} = {1, 2}

Some basic properties of unions are:

  • A U B   =   B U A
  • A  ⊆  A U B
  • A U A   =  A
  • A U ø   =  A
  • A  ⊆  B if and only if A U B = B

Intersections

A new set can also be constructed by determining which members two sets have "in common". The intersection of A and B, denoted by A ∩ B, is the set of all things which are members of both A and B. If A ∩ B  =  ø, then A and B are said to be disjoint.

A intersect B

The intersection of A and B

Examples:

  • {1, 2} ∩ {red, white} = ø
  • {1, 2, green} ∩ {red, white, green} = {green}
  • {1, 2} ∩ {1, 2} = {1, 2}

Some basic properties of intersections:

  • A ∩ B   =   B ∩ A
  • A ∩ B  ⊆  A
  • A ∩ A   =   A
  • A ∩ ø   =   ø
  • A  ⊆  B if and only if A ∩ B = A

Complements

Two sets can also be "subtracted". The relative complement of A in B (also called the set theoretic difference of B and A), denoted by B \ A, (or B − A) is the set of all elements which are members of B, but not members of A. Note that it is valid to "subtract" members of a set that are not in the set, such as removing green from {1,2,3}; doing so has no effect.

In certain settings all sets under discussion are considered to be subsets of a given universal set U. In such cases, U \ A, is called the absolute complement or simply complement of A, and is denoted by A′.

B minus A

The relative complement
of A in B

A complement

The complement of A in U

Examples:

  • {1, 2} \ {red, white} = {1, 2}
  • {1, 2, green} \ {red, white, green} = {1, 2}
  • {1, 2} \ {1, 2} = ø
  • If U is the set of integers, E is the set of even integers, and O is the set of odd integers, then the complement of E in U is O, or equivalently, E′ = O.

Some basic properties of complements:

  • A U A′ = U
  • A ∩ A′ = ø
  • (A′ )′ = A
  • A \ A = ø
  • A \ B = A ∩ B′

Cartesian product

A new set can be constructed by combining every element of one set with every element of a different set. The cartesian product of two sets A and B, denoted by A × B is the set of all ordered pairs (a,b) such that a is a member of A and b is a member of B.

Examples:

  • {1, 2} × {red, white} = {(1,red), (1,white), (2,red), (2,white)}
  • {1, 2, green} × {red, white, green} = {(1,red), (1,white), (1,green), (2,red), (2,white), (2,green), (green,red), (green,white), (green,green)}
  • {1, 2} × {1, 2} = {(1,1), (1,2), (2,1), (2,2)}

Some basic properties of cartesian products:

  • A × ø = ø
  • A × (B U C) = (A × B) U (A × C)
  • |A × B| = |A| x |B|

Applications

Set theory is seen as the foundation from which virtually all of mathematics can be derived. For example, structures in abstract algebra, such as groups, fields and rings, are sets closed under one or more operations.

One of the main applications of naive set theory is constructing relations. A relation from a domain A to a codomain B is nothing but a subset of A × B. Given this concept, we are quick to see that the set F of all ordered pairs (x, x2), where x is real, is quite familiar. It has a domain set \mathbb{R} and a codomain set that is also \mathbb{R}, because the set of all squares is subset of the set of all reals. If placed in functional notation, this relation becomes f( x ) = x2. The reason these two are equivalent is for any given value, y that the function is defined for, it's corresponding ordered pair, (y, y2) is a member of the set F.

Axiomatic set theory

Although initially the naive set theory, which defines a set merely as any well-defined collection, was well accepted, it soon ran into several obstacles. It was found that this definition spawned several paradoxes, most notably:

  • Russell's paradox - It shows that the "set of all sets which do not contain themselves," i.e. the "set" \left \{ x: x\mbox{ is a set and }x\notin x \right \} does not exist.
  • Cantor's paradox - It shows that "the set of all sets" cannot exist.

The reason is that the phrase well-defined is not very well-defined. It was important to free set theory of these paradoxes because nearly all of mathematics was being redefined in terms of set theory. In an attempt to avoid these paradoxes, set theory was axiomatized based on first-order logic, and thus the axiomatic set theory was born.

For most purposes however, the naive set theory is still useful.

See also

Notes

  1. ^ Quoted in Dauben, p. 170.

References

  • Dauben, Joseph W., Georg Cantor: His Mathematics and Philosophy of the Infinite, Boston: Harvard University Press (1979) ISBN 978-0-691-02447-9.
  • Halmos, Paul R., Naive Set Theory, Princeton, N.J.: Van Nostrand (1960) ISBN 0-387-90092-6.
  • Stoll, Robert R., Set Theory and Logic, Mineola, N.Y.: Dover Publications (1979) ISBN 0-486-63829-4.

External links

Wikimedia Commons has media related to:

Logic
Navigation: Portal · Category · WikiProject · Logic Stubs · Mathlogic Stubs · Cleanup · Noticeboard
Main Articles: Reason · History of Logic · Philosophical Logic  · Philosophy of logic · Mathematical Logic · Metalogic · Logic in computer science
Key Concepts
Controversies Paraconsistent Logic · Dialetheism · Intuitionistic logic · Paradoxes · Antinomies · Is logic empirical?
Key Figures Aristotle · Boole · Cantor · Carnap · Church · Frege · Gentzen · Gödel · Hilbert · Kripke · Peano · Peirce · Putnam · Quine · Russell · Skolem · Tarski · Turing · Whitehead
Lists Basic Topics in Logic · Topics in Logic · Logicians · Rules of Inference · Mathematical Logic Topics · Basic Discrete Mathematics Topics · Set theory topics · Paradoxes · Fallacies · Logical Symbols

be-x-old:Мностваzh-classical:集nov:Ensemble

This entry is from Wikipedia, the leading user-contributed encyclopedia. It may not have been reviewed by professional editors (see full disclaimer)

Dansk (Danish)
1.
v. tr. - sætte, stille, lægge, indstille, give, beramme, indfatte
v. intr. - gå ned, stivne, størkne, afbinde

idioms:

  • be set in one's ways    have faste vaner
  • set about    gå i gang med, begynde på
  • set against    sammenligne
  • set back    koste, forsinke
  • set by    sætte til side, henlægge
  • set down    sætte ned, sætte af, indføre, foreskrive, skrive ned
  • set down as    anse
  • set eyes on    se, se for sine øjne
  • set great store by    lægge vægt på, sætte pris på
  • set in    begynde for alvor, sætte ind
  • set in concrete    ligge helt fast
  • set off    starte, tage af sted, udløse, sætte i gang, affyre, udligne, modregne, sætte i relief
  • set on    angribe, overfalde, pudse på
  • set one's house in order    få orden på sit hus
  • set oneself up as    udgive sig for at være, optræde som, etablere sig som
  • set out    tage af sted, tage ud, fremsætte, fremføre, afstikke, lægge frem
  • set out for    tage af sted til
  • set the record straight    få tingene på det rene, opklare en misforståelse
  • set up    opsætte, rejse, opstille, stifte, etablere, indføre, udstøde
  • set upon    angribe, overfalde

2.
n. - sæt

3.
adj. - fast, fastsat, foreskreven, bestemt

Nederlands (Dutch)
zetten, plaatsen, situeren, watergolven, hard worden, stel, decor, set, verzameling, groep, kliek, pakket, klaar, bepaald, vastbesloten

Français (French)
1.
v. tr. - placer, poster, sertir, mettre (une table), tendre (un piège), fixer (une date), établir (un record), mettre (qch) à l'heure, mettre (qch) en marche, donner (des devoirs), poser (un problème), préparer (un examen), (Cin, Théât, Littérat, TV) situer, (Mus) mettre en musique, (Imprim) composer, (Méd) immobiliser, éclisser, faire une mise en plis, faire prendre/durcir (le béton), placer/estimer qn (au-dessus, en dessous de qn), (GB, École) grouper (qn) par niveau
v. intr. - se coucher (le soleil), prendre/durcir (le béton), sécher (la colle), (Méd) se ressouder

idioms:

  • be set in one's ways    avoir ses habitudes
  • set about    se mettre à, commencer à, attaquer (qn), faire courir (une rumeur)
  • set against    dresser contre, monter (qn) contre, s'opposer à qch, confronter qch à qch
  • set at    se mettre à
  • set back    reculer, retarder, être en retrait, coûter les yeux de la tête à
  • set by    mettre de côté
  • set down    poser, déposer, fixer, consigner par écrit, enregistrer, poser (un hélicoptère)
  • set down as    enregistrer comme
  • set eyes on    choisir des yeux
  • set forward    mettre en avant
  • set great store by    accorder de l'importance à
  • set in    commencer, se déclarer, survenir, arriver, s'installer (un ressentiment), (Cout) rapporter
  • set in concrete    coulé dans le béton, intégré au béton
  • set off    partir, déclencher, faire exploser, faire ressortir, (Fin) déduire, faire pleurer (un bébé)
  • set off against    (Fin) déduire (qch) de
  • set on    attaquer qn, lâcher (qch) contre qn
  • set one's house in order    mettre de l'ordre dans ses affaires, ranger sa maison
  • set oneself up as    s'établir à titre de
  • set out    se mettre en route (pour), partir en
  • set out to    avoir pour but de, chercher à, commencer à
  • set someone against    monter (qn) contre
  • set someone apart    prendre (qn) à part
  • set someone down    déposer qn
  • set someone up    aider qn à s'installer, remettre (qn) sur pied, tendre un piège à (un criminel), monter un coup contre qn
  • set something up    monter (un stand), assembler (un équipement), déplier (une chaise), ériger (un barrage routier), dresser (une statue)
  • set the record straight    (fig) mettre les choses au point
  • set to    s'y mettre
  • set upon    attaquer (qn)

2.
n. - jeu (de clés, etc), service (de table), collection (de livres), jeu (d'échecs), paire (de draps), (Sport) set (tennis), (Math) ensemble

3.
adj. - fixé/arrangé (d'avance)

Deutsch (German)
1.
v. - stellen, setzen, vorschreiben, legen, einrichten, zusammenstellen, festsetzen, besetzen, einlegen, decken, einrenken, hart werden

idioms:

  • be set in one's ways    in seinen Gewohnheiten festgefahren sein
  • set about    herfallen über
  • set against    antreiben gegen
  • set at    schätzen, taxieren
  • set back    behindern, zurücksetzen, zurückwerfen
  • set by    zurücklegen, außer acht lassen, aufschieben
  • set down    absetzen, niederschreiben, zuschreiben
  • set down as    halten für
  • set eyes on    jmdn. erblicken
  • set forward    voranbringen
  • set great store by    großen Wert legen auf
  • set in    einsetzen
  • set in concrete    einzementieren
  • set off    auslösen, losfahren
  • set off against    etw. einer Sache (Dat) gegenüberstellen, etw. als Ausgleich für etw. nehmen
  • set on    überfallen
  • set one's house in order    seine Angelegenheiten in Ordnung bringen
  • set oneself up as    sich niederlassen als
  • set out    aufbrechen, aufstellen, beabsichtigen
  • set out to    sich (Dat) vornehmen, etw. zu tun
  • set someone against    jmdn. gegen jmdn. aufbringen
  • set someone apart    sich abheben, auszeichnen
  • set someone down    absetzen, aussteigen
  • set someone up    sich etablieren als
  • set something up    etwas irgendwohin stellen, aufstellen, Anspruch erheben, verursachen
  • set the record straight    keine Mißverständnisse aufkommen lassen
  • set to    sich daranmachen, es sich schmecken lassen, loslegen
  • set upon    attackieren

2.
n. - Satz, Reihe, Setzling, Kreis, Sitz, Bau, Bühnenbild, Szenenaufbau, Gerät, Service, Set, Menge

3.
adj. - fertig, fest, vorgeschrieben, festgesetzt, bestimmt, entschieden, stur

Ελληνική (Greek)
v. - βάζω, θέτω, τοποθετώ, απιθώνω, παραθέτω, στήνω, ορίζω, διορθώνω, ρυθμίζω, σιάζω, τακτοποιώ, στοιχειοθετώ, μελοποιώ, δύω, βασιλεύω, πήζω, δένω (πολύτιμο λίθο), (για ενδύματα) εφαρμόζω
n. - σύνολο, σειρά, σετ, διάταξη, συσκευή, σκηνικό, πλατό, τάση (κοινής γνώμης), (στο τένις) σετ, (μαθημ.) σύνολο, μιζανπλί, ψυχική διάθεση
adj. - (καθ)ορισμένος, σταθερός, τακτός, κατασταλαγμένος, στερεότυπος, αμετακίνητος, έτοιμος, πηγμένος, απλανής

idioms:

  • be set in one's ways    είμαι αμετακίνητος στις συνήθειές μου
  • set about    αποδύομαι σε, καταπιάνομαι με, επιτίθεμαι σε
  • set against    αντιπαραβάλλω με/προς, στρέφω/-ομαι κατά
  • set back    βάζω πίσω (ρολόι), ρίχνω πίσω, κοστίζω, επιβαρύνω, απωθώ, αναχαιτίζω
  • set by    βάζω στην μπάντα
  • set down    απιθώνω, αποβιβάζω, καταγράφω, καταλογίζω
  • set down as    αποδίδω, καταλογίζω, χαρακτηρίζω
  • set eyes on    (πρωτο)βλέπω
  • set great store by    αποδίδω μεγάλη σημασία σε
  • set in    εγκαθίσταμαι, εδραιώνομαι, κατασταλάζω, επικρατώ, παγιώνομαι, (για εποχή του έτους) μπαίνω για τα καλά, (για σκοτάδι κ.λπ.) πέφτω (για τα καλά), (για ψύχος κ.λπ.) δυναμώνω (για τα καλά), (για καιρικές συνθήκες) δείχνω ότι θα διαρκέσω
  • set in concrete    μέσα σε μπετόν
  • set off    ξεκινώ, θέτω σε κίνηση, τονίζω, προβάλλω, αντισταθμίζω, πυροδοτώ, αντιπαραθέτω
  • set on    επιτίθεμαι κατά, παρακινώ σε, βάζω στα ίχνη
  • set one's house in order    τακτοποιώ τα του οίκου μου
  • set oneself up as    αυτοτιτλοφορούμαι (ως)
  • set out    ξεκινώ, εκθέτω, παραθέτω, διατυπώνω, διατάσσω, (προ)διαγράφω
  • set out for    ξεκινώ για
  • set the record straight    επανορθώνω σφάλμα
  • set up    ορθώνω, στήνω, ιδρύω, εγκαθιστώ, ξεσηκώνω, αρχίζω, οργανώνω, εξοπλίζω, ξεσηκώνω, διατυπώνω (θεωρία κ.λπ.), παραθέτω, ενοχοποιώ
  • set upon    επιτίθεμαι εναντίον

Italiano (Italian)
collocare, sistemare, temperare, aggiustare, ridurre, indurirsi, coppia, cerchia, ambiente, scenario, set, pacco, insieme, pronto, fisso, deciso

idioms:

  • be set in one's ways    essere abitudinario
  • set about    accingersi
  • set against    aizzare contro
  • set apart    separare, contraddistinguere
  • set aside    metter da parte
  • set at ease    mettersi comodo
  • set back    impedire, fare indietreggiare
  • set by    mettere da parte
  • set down    metter giù
  • set down as    considerare come
  • set forth    esporre, avviarsi, sottolineare
  • set in    cominciare
  • set off    partire, far esplodere, dare il via a, scatenare
  • set on    aizzare
  • set oneself up as    farsi passare per
  • set out    partire
  • set out for    dirigersi verso
  • set piece    opera artistica convenzionale
  • set right    riaggiustare
  • set square    squadra
  • set the scene/stage    preparare le condizioni per
  • set up    erigere, montare, incastrare
  • set upon    aggredire

Português (Portuguese)
v. - colocar, dispor, regular, fixar
n. - conjunto de (m), grupo (m)

idioms:

  • be set in one's ways    estar acostumado a fazer sempre o mesmo
  • set back    colocar-se atrás, atrasar
  • set by    meter de parte, economizar
  • set down    depor, colocar em baixo
  • set down as    considerar
  • set in    começar
  • set off    fazer iniciar
  • set on    avançar, atacar
  • set oneself up as    iniciar seu próprio negócio
  • set out    iniciar, partir
  • set out for    partir para
  • set up    iniciar uma profissão
  • set upon    agredir

Русский (Russian)
класть, помещаться, сажать, направлять, подготавливать, определять, садиться, комплект, серия, группа, прибор, конфигурация, направленность, неподвижный, установленный

idioms:

  • be set in one's ways    никогда не изменять своим привычкам
  • set back    помещать в дальнем конце, отодвигать, препятствовать
  • set by    приберегать, ценить, уважать
  • set down    письменно излагать, записывать, высаживать(пассажира), ставить (кого-л.) на место, давать отпор, резкий отказ, нагоняй, поездка в один конец
  • set down as    считать, рассматривать
  • set in    начинаться, наступать, устанавливаться, двигаться (в каком-л направлении), сажать (растения), вшивать (рукав), вставка, вставной, встроенный
  • set off    отправляться, выделять, начинать возбуждать, взрывать, выгодно подчеркивать, компенсировать, засчитывать
  • set on    двигаться вперед, приводить в движение, подвергнуться нападению
  • set oneself up as    выдавать себя за кого-л., претендовать на что-л.
  • set out    ставить, выставлять (на продажу), расставлять, накрывать (на стол), уставлять, намереваться, излагать, украшать
  • set out for    отправляться (в путешествие)
  • set up    помещать, ставить, вывешивать, воздвигать, основывать, устанавливать, открывать (какое-л. дело), помочь устроиться, предлагать, формулировать, планировать, поднимать (крик), обеспечивать, восстанавливать (силы), тренировать, причинять, выдавать себя за кого-л., проявлять удовлетворение
  • set upon    двигаться вперед, приводить в движение, подвергнуться нападению

Español (Spanish)
1.
v. tr. - poner, colocar, situar, ubicar, marcar, ondular, endurecer, cuajar, fraguar, poner en hora, reducir, encajar, montar, ajustar, sentar, asentar, poner a empollar, dirigir, destinar, fijar, señalar, plantar, erigir, preparar, alistar, llevar, azuzar, enemistar, adornar, sembrar, engarzar, dar, estimar, apreciar, inmovilizar, sujetar, apretar, (comp) configurar
v. intr. - fraguar, endurecerse, solidificarse, cuajarse, empollar huevos, caer bien, sentar, ponerse, declinar, acabar, apostar, fluir, tender, inclinarse, dedicarse, fijarse (un color), cambiar, deformarse

idioms:

  • be set in one's ways    determinado, pertinaz
  • set about    emprender, ponerse a, difundir, propagar, atacar
  • set against    instigar contra, enemistar con, comparar con, oponerse
  • set at    intento de ganar el afecto de alguien
  • set back    echar atrás, hacer retroceder, atrasar, retrasar, costar, detener, frenar
  • set by    guardar para uso futuro, ahorrar
  • set down    dejar o poner en el suelo, establecer, poner por escrito, apuntar, dejar bajar, dejar apearse, atribuir, hacer aterrizar, considerar, tomar por, fijar, prever
  • set down as    explicarse como, considerar algo como
  • set eyes on    ver, poner el ojo en
  • set forward    poner los ojos encima, ver, mirar
  • set great store by    atribuir importancia a, dar importancia a
  • set in    comenzar, aparecer, surgir
  • set in concrete    definitivo, reforzado con hormigón
  • set off    hacer resaltar, realzar, adornar, embellecer, volar, compensar, salir corriendo, hacer hablar
  • set off against    enemistar con, poner en contra
  • set on    atacar, instigar contra, azuzar, seguir adelante
  • set one's house in order    cuidarse de los asuntos propios
  • set oneself up as    dárselas de, presumir de, meterse a
  • set out    salir, partir, ponerse en camino
  • set out to    empezar a
  • set someone against    indisponer a alguien, malquistar con alguien, oponerse a alguien
  • set someone apart    apartar a alguien
  • set someone down    detener el coche y permitir a alguien bajar
  • set someone up    establecer a alguien en un puesto, sanar a alguien, incriminar dolosamente
  • set something up    erguir, fundar, construir, montar
  • set the record straight    dejar las cosas bien claras, deshacer un error
  • set to    ponerse a
  • set upon    atacar, emprender, instigar contra

2.
n. - pareja, par, círculo de personas, círculo, juego, conjunto

3.
adj. - decorado, determinado, fijado, fijado u organizado con antelación

Svenska (Swedish)
v. - sätta, ställa, lägga, sätta fram, sjunka, gå ner, strömma
n. - sats, uppsättning, set, saker, ställ, garnityr, servis
adj. - fastställd, fast, bestämd

中文(简体) (Chinese (Simplified))
1. 放, 置, 使接触, 竖立, 使处于, 落, 下沉, 凝结, 凝固, 衰落, 固定, 定型, 固定的, 坚决的, 规定的, 一套, 一批, 一副

idioms:

  • be set in one's ways    固执
  • set about    着手, 开始
  • set against    反对, 使对立, 使平衡, 从...扣除, 比较
  • set back    使受挫折
  • set by    把...留开
  • set down    放下, 制定
  • set down as    认为..., 把...看作
  • set eyes on    看到, 望见
  • set great store by    很相信
  • set in    开始, 上涨, 到来
  • set in concrete    固定
  • set off    出发, 使爆炸, 动身
  • set on    攻击, 怂恿, 前进
  • set one's house in order    整理
  • set oneself up as    以...自居
  • set out    出发, 装饰, 开始
  • set out for    出发去...
  • set the record straight    澄清问题
  • set up    竖立, 建立, 创立, 建造
  • set upon    攻击, 开始

2. 一套, 一副, 一部, 布景, 收音机, 电视机, 摄影场

中文(繁體) (Chinese (Traditional))
1.
n. - 一套, 一副, 一部, 佈景, 收音機, 電視機, 攝影場

2.
v. tr. - 放, 置, 使接觸, 豎立, 使處於
v. intr. - 落, 下沈, 凝結, 凝固, 衰落, 固定, 定型
adj. - 固定的, 堅決的, 規定的
n. - 一套, 一批, 一副

idioms:

  • be set in one's ways    固執
  • set about    著手, 開始
  • set against    反對, 使對立, 使平衡, 從...扣除, 比較
  • set back    使受挫折
  • set by    把...留開
  • set down    放下, 制定
  • set down as    認為..., 把...看作
  • set eyes on    看到, 望見
  • set great store by    很相信
  • set in    開始, 上漲, 到來
  • set in concrete    固定
  • set off    出發, 使爆炸, 動身
  • set on    攻擊, 慫恿, 前進
  • set one's house in order    整理
  • set oneself up as    以...自居
  • set out    出發, 裝飾, 開始
  • set out for    出發去...
  • set the record straight    澄清問題
  • set up    豎立, 建立, 創立, 建造
  • set upon    攻擊, 開始

한국어 (Korean)
1.
v. tr. - ~을 놓다, 가격을 매기다, (모종, 씨 등을) 심다
v. intr. - (해, 달 등이) 저물다, (일을) 시작하다, 굳어지다

idioms:

  • be set in one's ways    자기 방식 등에 집착하다
  • set about    ~에 착수하다, ~을 공격하다, 퍼뜨리다
  • set against    ~와 비교하다, ~와 사이가 틀어지게 하다
  • set back    저지하다, (시계 바늘 등을) 되돌리다, ~에 비용을 들이다
  • set by    제거하다, 저축하다, 몹시 귀하게 여기다
  • set down    밑에 놓다, 적어두다, 규정하다
  • set down as    ~로 보다
  • set eyes on    ~을 보다, 발견하다
  • set in    일어나다, 유행되다
  • set off    돋보이게 하다, 벌충하다, 구획하다
  • set on    ~을 덮치다, (개 따위를) 공격 시키다, 부추기다
  • set oneself up as    ~을 자처하다, ~이라고 주장하다
  • set out    출발하다, 말하다, 두드러지게 하다
  • set out for    출발하다
  • set upon    ~에 덮쳐 들다

2.
n. - (해 등의) 짐, 한 벌, (라디오) 수신기

3.
adj. - 고정된, 결심한, 정해진

日本語 (Japanese)
v. - 置く, する, 課する, 示す, 付ける, 配置する, 決める, 調整する, 準備する, 沈む, 与える, 固める, 固まる, セットする, 向ける
n. - 一組, 仲間, 格好, 着心地, 受信機, 受像機, 回, 流れ, 傾向, 苗, 舞台装置
adj. - 定められた, 指定の, 型にはまった, 意志が固い, 頑固な, 固定した, 硬直した, 定食の

idioms:

  • set about    …し始める, 攻撃する
  • set by    取り除く, しまっておく
  • set down    下に置く, 着陸させる, 書き留める, せいにする, みなす, 着陸する
  • set down as    ~とみなす
  • set down on    ~に降ろす
  • set in    始まる, 岸のほうへ吹く, 差してくる
  • set light/fire to    火をつける, 興奮させる
  • set off    出発する, 爆発させる, 上げる, 引き起こす, 始動させる, 引き立たせる, 始めさせる, …に…させ始める, 釣り合わせる
  • set on    攻撃する, 注ぐ, 前進する
  • set out    出発する, …するつもりで始める, はっきりと述べる, 広げる, 植え付ける, 設計する
  • set out for    出発する
  • set up    立てる, 組み立てる, 設立する, 主張する, 始めさせる, 開業させる, 供給する, 起こす

العربيه (Arabic)
‏(فعل) يطلق, ينصب, يهيأ, يقعد (الاسم) مجموعه من ألكتب أو ألأرقام تؤلف سلسله تامه (صفه) معين, محدد, متلاحم, عنيف, ضار‏

עברית (Hebrew)
v. tr. - ‮הניח, שם, הציב, קבע, עורר, גרם, ערך, סידר, הכין, הטיל על, כיוון, ויסת, המריץ‬
v. intr. - ‮הקריש, הפסיק לנוע, עטו ארשת קשה (פנים), חש או הראה נטייה מסוימת, נעשה לפרי (פרח), נעה בכיוון מסוים (גיאות), עשה פרי (עץ), ישב (עגה), התחיל‬
n. - ‮אנשים, חוג, קבוצה, מבנה, תנוחה, נטייה, התקרשות, מערכת כלי-בית, מקלט (מ פתוחה), שתיל, מערכת, מערכה (טניס), קבוצת עצמים בעלי תכונות משותפות או המשמשים למטרה אחת, קבוצת תלמידים בעלי יכולת ממוצעת דומה, נצר או פקעת לשתילה, תנוחה טבעית‬
adj. - ‮יציב, קבוע מראש, עקשני, נחוש-דיעה, מוכן, ערוך, מוכן לפעולה, נקבע מראש, מומלץ‬

If you are unable to view some languages clearly, click here.

To select your translation preferences click here.