web.archive.org

technology: Definition and Much More from Answers.com

  • ️Fri Feb 16 2007

Early modern Europeans paid new attention to the machines and technical processes that created most of their material goods. Appreciation of rapidly advancing arts and inventions was not particularly new—the Middle Ages also having been an era in which myriad new technologies appeared in Europe. What was becoming noticeably different by the middle of the fifteenth century was that new technologies were becoming a force in the shaping of Europeans' intellectual framework—just as they shaped social frameworks through the expanding manufactories in mining, ordnance, papermaking, printing, and textiles. Both the material and the mental landscapes of early modern Europe were dramatically reconfigured over these centuries, and in a very self-consciously interdependent way.

Homo Faber

"Technology" did not really exist as a concept until at least the seventeenth century; what we see in the early modern period is the attempt to create a realm that constantly straddled growing scientific thought and developing industrial practices. Technology continues today to ambiguously refer both to the practices and tools of material construction, and to the knowledge (the -ology) about how these practices and tools operate. In the centuries spanning the invention of the printing press and the first experiments with electricity, technology gave rise to a particular vision of human effort and learning, one whose central image was that of "progress."

Mechanical arts in the ancient and medieval period had often been disregarded by scholars and philosophers and by the makers of literate culture. To a large extent, the name "mechanic," because associated with manual labor, remained tainted throughout the early modern period (and remains so today). However, starting in the Renaissance, Europeans began to reframe their concept of learning around the study of human productivity. This reframing contributed significantly to the restructuring of the existing system of Aristotelian natural philosophy. The knowledge of machines and technical processes became clues to the natural forces that govern both natural and artificial processes. Galileo Galilei's (1564–1642) formulation of kinematic motion, for example, was completed at the end of long years studying projectiles in the context of military engineering. Early modern theorists of science and enlightenment articulated the faith that philosophical knowledge can be derived from technical arts, and then reapplied to organize the technical world in a more efficacious way. They did not so much dignify craftsmen as seek to appropriate from craftsmen universal principles by which the arts could be directed. The capture of those principles became a major goal of scientific enquiry and underwrote a new professional engineer with status and learning meant to distinguish him from the mere craftsman.

Wonders of the Age

By 1548, the French physician and astronomer Jean Fernel (1497–1558) could proclaim the inventions that testified to "the triumph of our New Age": the compass, the cannon, and the printing press. Of these, the printing press, nearly one hundred years old, was the newest. The full impact of the compass, cannon, and printing press was not obvious until the end of the fifteenth century and depended on the development of other technologies.

Compass. The introduction of the magnetic compass gave mariners not only a new way of navigating in open sea, but, perhaps even more importantly, a means of recording their journeys in a readable and fairly precise way. The portolan map, fully developed by the fifteenth century, was produced by drawing coast lines and islands according to constant lines of compass bearing. The remarkable advance this offered can only be appreciated visually. In the middle of the fifteenth century, this advantage to navigation was joined by a new ship design that allowed greater maneuverability. The medieval carrack was replaced by the three-masted ship, which offered more sail area, the ability to sail windward, and larger sterns for cargo and crew. By 1488, Portuguese sailors, who were also learning the system of winds, were able to circumnavigate the Cape of Good Hope. Oceanic voyages quickly opened up new prospects for trade with the East, and, after 1492, a New World.

Cannon. The development of gunpowder artillery changed the balance of power both between Europeans and other peoples, and, intermittently and temporarily, between the emerging nation-states of Europe. Invented sometime in the early fourteenth century as a rather cumbersome, if effective, bombard, gunpowder artillery underwent a great deal of development throughout the fifteenth century. Europeans learned to cast and bore cannons (rather than barrel together hoops of forged metal) to specific calibers; they designed gun carriages for better mobility; they learned to make nitrates for the salt-peter necessary to gunpowder production, and to corn (or ball) the gunpowder for better storage. The main effect the advent of widespread cannon warfare had on noncombatants was to change the faces of their cities. Older town walls (and often a number of townsmen's houses) were demolished for newer, lower, and thicker geometrical circuits. Polygonal, bastioned fortifications, the trace Italienne, were built around numerous continental European cities. A secondary effect of military engineering concerns was to focus attention on the problems of projectile motion, impact, and the resistance of materials—all areas of concern in the establishment of a new physics.

In the field, the integration of small arms worked to further alter the conduct of open battle. The shoulder-carried harquebus or musket, already in use by the 1480s, developed into a common weapon of the infantry, even if pikemen continued to be of essential importance into the seventeenth century. A more sudden transformation took place in the cavalry as a result of the spread of the wheellock pistol in the mid 1500s. Employed by mounted German Reiters, and further developed as a cavalry weapon by the French under Henry IV (ruled 1589–1610), the adoption of the pistol led to the dethroning of the armored lance, and "the end of knighthood."

Printing press. The political theorist Jean Bodin (1530–1596) wrote, "The art of printing alone would easily be able to match all the inventions of the ancients." Printing had transformed intellectual life. Before its advent around 1450, a personal library of fifty volumes was considered sumptuous; by Bodin's writing, noblemen routinely collected hundreds; pamphlets and other cheap print were available to most literate people.

The printing press relied on a set of standard-sized raised letters, cast in a matrix that had been impressed with the letter's impression by a steel punch, and then set into a form. The system of punches, matrices, and forms was the most significant (and expensive) aspect of the invention, and established printing as the first industry to employ interchangeable parts. The success of the print trade relied on the earlier development of paper technology, which in the previous 150 years had largely replaced parchment (scraped animal skins) and greatly reduced the expense of books. It also depended on sophisticated metallurgy; steel was difficult to produce, and the metals used had to perform properly.

Other arts. Aside from these "revolutionary" technologies, a host of smaller-scale innovations enriched domestic interiors between 1450 and 1550. Venetian glassmakers pioneered a refined clear glass in the late fifteenth century, and Italian potters began to manufacture brightly painted majolica. The European silk industry expanded greatly. In the sixteenth century, the French potter Bernard Palissy (1510–1589) formulated a pure white glaze in imitation of porcelain. All these products offered domestic alternatives to goods that had previously been imported from the Middle or Far East. Meanwhile, techniques for quicksilvering mirrors and the development of oil paints that could capture dramatic lighting effects offered new adornments.

With printing, the techniques of numerous arts were recorded in printed books. By the end of the sixteenth century, books were available on the employments, tools, and "secrets" of trades as diverse as fishing, pyrotechnics, metallurgy, and architecture. Many were written by practicing artisans and mechanics. Some of these books amounted to little more than lists of recipes, while others eloquently discussed the relationship between art and nature, and insisted on the need for both theory and practice in the proper execution of crafts. These discussions offered an alternative discourse on these subjects to that available through elite education. Later promoters, apologists, and organizers of technological knowledge drew heavily on this vast literature.

Architects and Humanists

Renaissance artists created some of the most impressive engineering feats of their day. Filippo Brunelleschi (1377–1446) awed his contemporaries with the construction of the enormous duomo atop the Florentine cathedral. The dome was constructed without centering or beams by connecting eight spears above the cathedral. Even Brunelleschi's scaffolding and lifting machine designs were copied by other artists. The most developed mechanical knowledge available was no doubt cultivated by architects. This was particularly obvious in Italian cities, where architects and other artists were highly trained in practical mathematics, and constantly experimented, at least in sketches, with various combinations of machine elements. Leonardo da Vinci's (1452–1519) well-known breadth of interests—stretching from his designs of ingenious devices to sculpture to painting—was not uncommon. Francesco di Giorgio (1439–1502) also developed great expertise in the fields of engineering and hydraulics, along with his more decorative work. Architects directed sometimes dramatic refigurement of major cities. Rome was largely rebuilt in the sixteenth century and Paris in the seventeenth. Architects also designed dams and waterways, fortifications, and stage machinery.

As works of architecture and engineering gained greater cultural capital as markers of status and power, scholars and patrons themselves often came to seek the knowledge of the architects and to share their literate culture. Leon Battista Alberti (1404–1472) was a humanist who carved a new role for himself as the technical counselor to powerful men. His treatises detailing mathematical and conventional rules for painting, sculpture, and architecture became classics even in manuscript. Cooperation between elites and architects centered on military engineering and the study of ancient technical texts, works that promised the secrets of recreating the splendid world of the ancients. The duke of Urbino, Federigo Montefeltro (1422–1482), himself tried to aid Francesco di Giorgio in a translation of De architectura by the Roman architect Vitruvius. Alberti had given up making sense of this text, but the first editions came from practicing architects: Fra Giovanni Giocondo da Verona's (c. 1433–1515) Latin text of 1511, and Cesare Cesariano's vernacular edition in 1521. Other texts considered clues to ancient marvels of engineering were also routed to prominent architects and painters by their patrons. Texts of Archimedes, the hydraulics of Hero, and the mechanical collections of Pappus were books examined by scholars of both elite and artisanal status.

By the end of the sixteenth century, mathematicians such as Federico Commandino (1509–1575) and Guidobaldo del Monte (1545–1607) had developed their own elaboration of a classical rational mechanics. This work remained rooted to the world of the mechanic, but began to address a new sort of engineering professional that was just then beginning to emerge.

Natural Magic and Alchemy

No easy category existed during the late Renaissance in which to place figures who performed technological feats. The Syracusan Archimedes (c. 287–212 B.C.E.), for example, was famous as the maker of a wooden bird that flew all by itself, and as the engineer whose special mirrors burned Roman ships in the harbor—both accomplishments that early modern engineers attempted to recreate well into the eighteenth century. In the language of Renaissance Neoplatonism, the term magus often served best to characterize such figures. The magus was figured as a wise man whose knowledge of occult (hidden) natural properties allowed him to unleash operative forces and create amazing effects. Scholars of magic—among the most learned of the age—developed a doxography that linked magical, philosophical, and religious figures in historical progressions: from the legendary Egyptian magus Hermes Trismegistus, to Moses, to Pythagoras, to Platonic and Aristotelian philosophers, to Ptolemy as a judicial astrologer, and thence to the Hellenistic mathematician and reputed engineer Archimedes.

Meanwhile engineers themselves, military engineering writers such as Conrad Keyser (1366–1405) and Giovanni da Fontana (1395?–1455?), had cultivated a mixture of technology and magic. "Natural magic" pointed to the operative power inherent in technology, and offered a framework outside that of Aristotelian causality. By the turn of the seventeenth century, discussions of technology often adopted the name "magic" as "the practical part of natural philosophy." Influential writers such as Tommaso Campanella (1568–1639) and Giambattista della Porta (1535?–1615) continued to configure technological work as natural magic. Della Porta in particular had himself demonstrated success experimenting with lenses and was a key member of the Accademia dei Lincei before Galileo, with his mathematical-philosophical approach to technology, gained center stage among the academicians. In England the connection remained intact through Robert Fludd (1574–1637), whose work explicitly drew together mechanical technologies and divinatory arts within a mystical Christian framework. The work of John Wilkins (1614–1672) is a late echo of the connection between mathematics, technology, and magic. His compendium of the most current work in rational and practical mechanics was entitled Mathematical Magic, but the "magic" was completely removed from occult overtones, and merely captured the transformative power of technology.

Another tradition of natural magic ran from Hermes to alchemical thinkers such as the medieval Islamic alchemist Geber and the learned friar Roger Bacon (c. 1220–1292). Alchemy was a repository of knowledge for a variety of distillation and metallurgical techniques. Before a more rationalized nomenclature could be instituted, alchemical lore was often veiled in occult language and bizarre images. Alchemy enjoyed something of a vogue in the sixteenth and seventeenth centuries and occupied some of the finest minds of the age, including the twenty-year concentrated studies of Isaac Newton (1642–1727). Alchemy consisted of distillation and metallurgical techniques, and created seemingly new substances through the combination and heating of reagents. These practices were often conceived within a theory of metals and a religious-spiritual view of nature and human labor. Probably due to the shapes of mineral veins, metals were believed to grow inside the earth; over long periods of time all metal would mature into gold. Alchemy was the art and labor by which nature could be hastened and perfected. While alchemists did indeed believe it was possible to turn base metals into gold, the operations of alchemy also provided both consumable products and an observable, experimental analog to the processes of nature. Metallurgists utilized the literature and techniques of alchemy, and Paracelsus (Philippus Aureolus Theophrastus Bombastus von Hohenheim, 1493–1541) developed a chemical medicine and alchemical view of nature that found numerous followers throughout the sixteenth and seventeenth centuries.

Baconians and the Direction of Progress

Francis Bacon (1561–1626) spent much of his forced retirement from politics writing on a reform of knowledge that would account for and extend the success of technological traditions but avoid the drawbacks of its current practices. His Novum Organum (1620; New organon) detailed both criticisms of the current state of knowledge and remedies. Bacon advocated the redirection of philosophy away from erudition and logical terminology, toward experience and the advancement of material wealth. Mechanics, mathematicians, physicians, alchemists, and magicians, Bacon noted, had handson knowledge of nature, "but all [have met with] faint success." Bacon had patience neither to wait for the happenstance of a lucky discovery or invention, nor to suffer the "fanciful philosophy" advanced by alchemists and others who presumed too much based on a narrow base of technical knowledge. "Knowledge and human power are synonymous," he proclaimed. While he advocated a program of experimentation, he was decidedly more articulate about a more descriptive collection of facts from the natural and technological worlds. For example, from a "history of trades" that would chart information from all manner of tradesmen, the philosopher would draw out axioms of principal import. The axioms could then be used to organize and further the trades.

Bacon's program, with the approach of the 1640 Puritan Revolution, appeared to some to offer the prospect of a "new Albion," an Edenic England created through technology in a great reform of religion, mind, and social organization. Samuel Hartlib (c. 1600–1662), for example, worked toward such a vision. Hartlib was in fact central to the circle of men who later founded the Royal Society.

The Royal Society, founded on explicitly Baconian inspiration, at first tried to fulfill the role of collectors of histories of trades. While this project was not successful, the society often centered around the experiments made by its curator. Information on mines, machines, and other technological news was assiduously collected along with accounts from physicians, mathematicians, and naturalists, and was printed in the Philosophical Transactions. Exhaustive histories of trades were finally realized at the end of the eighteenth century in France. The overt Baconians Denis Diderot (1713–1784) and Jean Le Rond d'Alembert (1717–1783) and the more staid Académie des Sciences both produced encyclopedias of arts and trades in the decades before the French Revolution.

Technologies for Science; Science for Technologies

While Bacon had fully recognized the mutual relationship between the reform of natural philosophy and the progress of the arts, he had paid relatively little attention to the technologies that were themselves transforming the practices of science. While mechanics, architects, and craftsmen had always used mathematical measuring instruments in their work, and these themselves underwent great refinement in the sixteenth century, the new scientific instruments of the seventeenth century—the telescope, microscope, air pump, and to a lesser degree thermometers and barometers—depended on technologies and offered possibilities on a whole new level. The telescope and the microscope extended human vision enormously and produced experiential evidence in debates such as that over the Copernican hypothesis. The air pump, as it was developed by Robert Boyle (1627–1691) and his mechanic-client, Robert Hooke (1635–1703), consisted of a ratchet and piston system that could evacuate a glass receiver one cylinder-volume at a time. This served as a stage of observation for an artificial environment of evacuated air and allowed Boyle to make claims concerning the nature of the tiniest units of matter. This was a sort of instrument that had never been used in natural philosophy before. Such instruments were difficult to get to work dependably, and often relied on the skills of a mechanic like Robert Hooke.

Meanwhile, both elite and practical mathematicians developed mathematical skills that were meant to aid the design of ever more complicated technical tasks. Vernacular editions of Euclid had been available since Niccolò Tartaglia's (1499–1557) 1543 Italian edition. Above all, these editions spread and popularized geometrical proportioning techniques. Simultaneously, in the early seventeenth century the Scottish nobleman John Napier (1550–1617) and the Swiss watchmaker Joost Bürgi (1552–1632) developed logarithms that would make trigonometrical computations much easier. Napier in particular drew explicit attention to the ways logarithms would ease tasks in military engineering and survey. Napier also employed the decimal notation developed by the Dutch engineer and counselor to Maurice of Nassau (1567–1625), Simon Stevin (1548–1620). Decimal notation eased work with fractions. Proportional compasses and calculating sectors also eased practical calculations. The foundations of algebraic analysis were meanwhile made by Pierre de Fermat (1601–1665), and a century later the use of analysis became essential to the cadets of France's technical institutes, and made possible a new style of engineering. Meanwhile, projective geometry, always to some extent a tool of architects and engineers, had been highly developed and integrated into perspective by Gérard Desargues (1591–1661). Descriptive geometry was institutionalized in technical drawing, again at the French écoles, by Gaspard Monge (1746–1818).

Projectors, Artificers, and Their Patrons

In his fable of the ideal technological and moral society, the New Atlantis (1627), Francis Bacon had presented a kind of intellectual mirror opposite of mercantilist programs. In his imaginary Benthalem, technological secrets were constantly imported by explorers and developed by technicians; no technologies, however, would be exported to other nations. This speaks both to concerns about industrial espionage and difficulties caused by undeveloped patent laws that infected all states in Europe. It also indicates some of the enthusiasm political and cultural leaders had in the wholesale collection of technical knowledge, and their reliance on mechanical workers to feed their interests.

European rulers had long tried to prohibit the export of technologies on which their economies depended. Venice, for example, forced glassmakers to swear they would not take their art outside of the city's dominion. The importance of technological transference through the migration of skilled persons is most forcefully demonstrated in the case of Lucca's silk-throwing machine, the filotoio. Anyone carrying knowledge of this machine outside the confines of the city was threatened with death. Meanwhile, a design of the machine had been publicly available for years in Vittorio Zonca's Novo Teatro di Machine et Edificii (1607). It was not until the eighteenth-century industrial spy John Lombe spent two years studying the machine in Italy that the machine could be reproduced and operated.

Semi-itinerant mechanics often haunted baroque courts. Mechanicians such as Dutch-born Cornelis Drebbel (1572–1633) attracted attention in England (and for a short time in Prague) with perpetual motion machines, inventive skills for such devices as diving bells, and technical know-how for such major works as the draining of fens. As a projector in various German courts, the alchemist and mechanic Johann Joachim Becher (1635–1682) rose to something of a patron himself. He solicited secrets from a range of artificers, and probably used his alchemical skills to advertise his ideas for a new political economy based on trade and technology rather than agriculture. Numerous enthusiasts and scientific gentlemen cultivated relationships with their own artificers to construct machines.

Clocks and Watches

The first town clocks were constructed in the Middle Ages, usually as way of letting workmen know when shifts should change in new textile factories. While watchmakers themselves continually refined methods of gear-cutting throughout the period, scientists dramatically innovated clocks in the mid-seventeenth century. Clocks became more accurate and more convenient and promised a solution to the problem of determining longitude at sea—one of the most long-standing obstacles to navigation—as well as offering advantages to positional astronomy. If one could accurately keep track of the time of the home port and local time, longitude could easily be calculated. In 1656, the Dutch scientist Christiaan Huygens (1629–1695) designed a clock using a pendulum oscillator with a tautochronic, one-second period. The pendulum clock, however, proved inappropriate for the pitching deck of a ship. In the mid 1660s, Huygens turned to oscillators formed of a spiral hair spring—just as Robert Hooke was also investigating the use of a hair spring. This gave rise to a bitter, ultimately unresolved controversy over patents. However, neither watch proved accurate enough to serve the purposes of a marine chronometer. The government prize for the solution of the longitude problem, £20,000, was finally awarded in 1765 after the Yorkshire watchmaker John Harrison (1693–1776) improved accuracy through advances in workmanship rather than design.

Automatons and Popular Demonstrations

In the sixteenth and early seventeenth centuries, mechanical devices for delight had largely been cultivated in personal collections and gardens. Self-moving statues, ingenious fountains, and hydraulic devices designed by architects like Salomon de Caus (1576–1626) delighted visitors. Mechanical marvels were often placed next to exotic naturalia and antiquities. In the eighteenth century, automatons, such as those designed by Jacques de Vaucanson (1709–1782), were exhibited in shows and fairs.

More serious forms of enlightened infotainment were provided by popularizers of Isaac Newton's work. Jean Theophilus Desaguliers (1683–1744), for example, offered ten-week courses at a cost of two guineas a head. Demonstrators of "Newtonian" devices showed their wares from town to town. The abbé Jean-Antoine Nollet (1700–1770) made presentations of the new physics, and was a favorite in French salons. These popular mechanical demonstrations and lectures were probably one of the best venues in which to learn about applied mechanics. The automatons and demonstration devices, however, belonged to a larger cultural context in which machinery powered more tasks, and automation of labor was becoming more prevalent.

Mills: Age of Water and Wood

If the nineteenth century was predominantly an age of coal and iron, the preceding centuries were largely characterized by water and wood. The vertical water wheel and the windmill were both imported to the Latin West in the Middle Ages. By 1450, these sources of power were already applied to brewing, hemp production, fulling, ore stamping, tanning, sawmills, blast furnaces, paper production, and mine pumping. Their use and development continued throughout the early modern period. The principle of translating circular wheel motion into other forms of translational motion was also applied through human or animal labor. Concern for milling and water-lifting machines is testified by the printed machine books of Agostino Ramelli (1531–c. 1600), Jacques Besson (1540–1576), and Vittorio Zonca (born c. 1580). These books present the intricate connection of wheels, gears, cams, and winches. Concurrent with the pressing need for machines to power manufactories was the need for machines that could pump or raise water. The latter were everywhere employed for drinking-water, for evacuating deep mines, for draining swamps, and for building canals.

The Netherlands, not surprisingly, led Europe in these technologies, both because of the superabundance of water and the need to drain the land and dredge ports. Because prevailing westerlies dependably blow over its lands, the Dutch also perfected windmills. Top sails could be rotated (either because mounted on a rotating cap or because the bottom of the tower could be rotated on wheels) to face wind. The Wimpolen drove bucket chains that drained water from the soil, then dumped it into the canals, and was part of land reclamation projects. Dutch experts in water reclamation and water wheel machinery were in high demand throughout the seventeenth century.

The main drawback of these early modern machines was that they were made of wood. By the late sixteenth century, Europe had been largely deforested, and wood became increasingly expensive. Wood also was a material in which precision tooling was limited, and which broke easily and required much maintenance.

Textiles

Textiles were among the first products to be produced on a large scale through division of labor and mechanization. Important textile manufactories were well established in Italy and the Netherlands by the thirteenth century. In the sixteenth and seventeenth centuries, modest mechanized advances in ribbon weaving were introduced. In the 1730s, John Kay's (1704–1764) "flying shuttle" made weaving much faster and allowed broader cloth. This invention was soon followed by methods that mechanized jacquard weaving and repetitive pattern weaving.

Increased speed in weaving put heavier demands on the spinning of the yarns. Richard Arkwright (1732–1792) became one of the richest men in late-eighteenth-century England by mechanizing the spinning process of newly exploitable cotton imports. Arkwright's "waterframe" managed to imitate the touch of spinning and drawing out yarns by hand. Cotton fibers were drawn along through three pairs of rollers, each pair spinning at an increasingly faster rate. Arkwright began a spinning mill powering his invention with one horse in 1769, but established a water-powered mill only two years later. He continued to mechanize the industry with carding machines and a drawing frame.

Mining, Metallurgy, and the Steam Engine

With a demand for more intensive mining, and often entrepreneurial investment, sixteenth-century mining employed a vast array of machines and techniques, including the first form of the railroad. These were detailed in the elaborately illustrated volume De Re Metallica by the humanist Georgius Agricola (1494–1555). Deep ore deposits required pumps to evacuate water; the ore had to be raised; it was then roasted to make crushing easier. By the sixteenth century, most crushing was done by power-driven stamping mills. Ores were then fired in a blast furnace to extract the metals, and finally refined through a variety of metallurgical techniques, depending on the metals present.

The blast furnace was introduced by the beginning of the sixteenth century, and adopted across Europe. It was larger than its predecessor and required mechanical power to work the large bellows that provided the "blast" of hot air across the smelting metals. The furnace also had to be kept going around the clock. These alterations meant that blast furnaces needed to be built where there were plentiful supplies of water to run the water wheel, timber to make charcoal and fuel the furnace, plentiful labor, and exploitable ores. The blast furnace also made possible a new product: cast iron. While cast iron, particularly English cast iron, had a use in the making of ordnance, most cast iron was formed into wrought iron in a secondary process.

The iron trade was freed from the expense of charcoal fuel and the necessity and drawbacks of water-driven wheels in the mid-eighteenth century by the innovations of Henry Cort (1740–1800) and James Watt (1736–1819). Henry Cort developed a new style of furnace that made possible the use of coal in smelting iron by designing a way in which the sulfurous coke was kept out of direct contact with the metal. Watt improved the Newcomen steam engine used in mine drainage so that it was far more powerful. Thomas Newcomen's (1663–1729) steam engine was itself a variation of a philosophical curiosity invented by the mechanic Denis Papin (1647–1712?). The principle of both was to raise a piston in a cylinder by forcing it up with steam, then allowing condensation to create a vacuum so that atmospheric pressure would push the piston down. Watt added a separate condenser and a steam jacket around the cylinder, thus creating a far more rapid and powerful engine. Watt's steam engine was later adapted for use in many other manufactories, notably in textile and brass production, and made possible many new technologies. By the end of the eighteenth century, an average furnace consumed at least 2,000 tons of coke, processed 3,000 to 4,000 tons of iron ore, and produced 1,000 tons of iron per year.

Engineers, Entrepreneurs, and Enlightenment

As a generalization, one might say that the Renaissance gave rise to the great Italian architect-engineers; the baroque hailed the itinerant skilled mechanic from German and Dutch lands; and the Enlightenment saw the development of the highly trained French engineer and fostered the activities of the English entrepreneurial engineer.

By the end of the seventeenth century, Edmond Halley (1656–1742), otherwise beholden to various patronage networks and government service, set up his own ship-salvaging firm based on his innovative diving bell and diving suit. James Watt was one of the most successful (in part due to his association with Matthew Boulton [1728–1809]) and prominent of a number of engineers and inventors whose businesses flourished in eighteenth-century England. His association with the Birmingham "Lunar Society" is also instructive: a group composed of Watt, Boulton, the ceramics manufacturer Josiah Wedgwood (1730–1795), the botanist Erasmus Darwin (1731–1802), chemists James Keir (1735–1820) and Joseph Priestley (1733–1804), among others. These men saw the power of the connection between science and industry, and its possibilities for the improvement of society. They themselves had become engineers, curators of craftsmen, and scientists in eighteenth-century England's free mix of popular science and artisanal mechanics; however, they advocated a more rigorous scientific education for following generations. Whatever the workers in the mills, mines, and manufactories might have thought, members of the Lunar Society saw the values and products of science and technology as those most likely to lead to the moral, intellectual, and material liberation of humanity. This ideology they shared with many French Revolutionaries. Indeed, their forces were scattered in 1791 when a mob sacked the house of Priestley and others for their support of the French Revolution.

Bibliography

Braudel, Fernand. The Structures of Everyday Life: The Limits of the Possible. Translated and revised by Siân Reynolds. New York, 1981.

Bredekamp, Horst. The Lure of Antiquity and the Cult of the Machine: The Kunstkammer and the Evolution of Nature, Art, and Technology. Translated by Allison Brown. Princeton, 1995.

Cipolla, Carlo M. Before the Industrial Revolution: European Society and Economy, 1000–1700. 3rd ed. Translated and revised by Christopher Woodall. London, 1993.

——. Guns, Sails, and Empires: Technological Innovation and the Early Phases of European Expansion, 1400–1700. New York, 1965.

Eamon, William. Science and the Secrets of Nature: Books of Secrets in Medieval and Early Modern Culture. Princeton, 1994.

Goodman, David C. Power and Penury: Government, Technology, and Science in Phillip II's Spain. Cambridge, U.K., 1988.

Heller, Henry. Labour, Science, and Technology in France, 1500–1620. Cambridge, U.K., 1996.

Jacob, Margaret C. Scientific Culture and the Making of the Industrial West. New York and Oxford, 1997.

Jardine, Lisa. Ingenious Pursuits: Building the Scientific Revolution. New York and London, 1999.

Long, Pamela O. Openness, Secrecy, Authorship: Technical Arts and the Culture of Knowledge from Antiquity to the Renaissance. Baltimore, 2001.

Mc Cray, Patrick W. Glassmaking in Renaissance Venice: The Fragile Craft. Aldershot, U.K., and Brookfield, Vt., 1999.

Mc Neil, Ian, ed. An Encyclopaedia of the History of Technology. London and New York, 1996.

Rossi, Paolo. Philosophy, Technology, and the Arts in the Early Modern Era. Translated by Salvator Attanasio. Edited by Benjamin Nelson. New York, 1970.

Schaffer, Simon. "Machine Philosophy: Demonstration Devices in Georgian Mechanics." Osiris 2nd ser., 9 (1995): 157–182.

——. "Natural Philosophy and Public Spectacle in the Eighteenth Century." History of Science 21 (1983): 1–43.

Singer, Charles, E. J. Holmyard, and A. R. Hall, eds. A History of Technology. Vol. 2, From the Renaissance to the Industrial Revolution, c. 1500–c. 1750. Oxford, 1957.

Smith, Pamela. The Business of Alchemy: Science and Culture in the Holy Roman Empire. Princeton, 1994.

Stewart, Larry. "A Meaning for Machines: Modernity, Utility, and the Eighteenth-Century British Public." Journal of Modern History 70, no. 2 (1998): 259–294.

——. The Rise of Public Science: Rhetoric, Technology, and Natural Philosophy in Newtonian Britain, 1660–1750. Cambridge, U.K., 1992.

—MARY HENNINGER-VOSS