web.archive.org

Triangular distribution: Information from Answers.com

Triangular
Probability density function
Plot of the Triangular PMF
Cumulative distribution function
Plot of the Triangular CMF
Parameters a:~a\in (-\infty,\infty)
b:~b>a\,
c:~a\le c\le b\,
Support a \le x \le b \!
Probability density function (pdf) 
                \left\{
                  \begin{matrix}
                    \frac{2(x-a)}{(b-a)(c-a)} & \mathrm{for\ } a \le x \le c \\ & \\
                    \frac{2(b-x)}{(b-a)(b-c)} & \mathrm{for\ } c \le x \le b 
                  \end{matrix}
                \right.
Cumulative distribution function (cdf) 
                \left\{
                  \begin{matrix}
                    \frac{(x-a)^2}{(b-a)(c-a)} & \mathrm{for\ } a \le x \le c \\ & \\
                    1-\frac{(b-x)^2}{(b-a)(b-c)} & \mathrm{for\ } c \le x \le b 
                  \end{matrix}
                \right.
Mean \frac{a+b+c}{3}
Median 
                \left\{
                  \begin{matrix}
                    a+\frac{\sqrt{(b-a)(c-a)}}{\sqrt{2}} & \mathrm{for\ } c\!\ge\!\frac{b\!-\!a}{2}\\ & \\
                    b-\frac{\sqrt{(b-a)(b-c)}}{\sqrt{2}} & \mathrm{for\ } c\!\le\!\frac{b\!-\!a}{2} 
                  \end{matrix}
                \right.
Mode c\,
Variance \frac{a^2+b^2+c^2-ab-ac-bc}{18}
Skewness 
              \frac{\sqrt 2 (a\!+\!b\!-\!2c)(2a\!-\!b\!-\!c)(a\!-\!2b\!+\!c)}{5(a^2\!+\!b^2\!+\!c^2\!-\!ab\!-\!ac\!-\!bc)^\frac{3}{2}}
Excess kurtosis -\frac{3}{5}
Entropy \frac{1}{2}+\ln\left(\frac{b-a}{2}\right)
Moment-generating function (mgf) 2\frac{(b\!-\!c)e^{at}\!-\!(b\!-\!a)e^{ct}\!+\!(c\!-\!a)e^{bt}}
{(b-a)(c-a)(b-c)t^2}
Characteristic function -2\frac{(b\!-\!c)e^{iat}\!-\!(b\!-\!a)e^{ict}\!+\!(c\!-\!a)e^{ibt}}
{(b-a)(c-a)(b-c)t^2}

In probability theory and statistics, the triangular distribution is a continuous probability distribution with lower limit a, mode c and upper limit b.

f(x|a,b,c)=\left\{
                      \begin{matrix}
                          \frac{2(x-a)}{(b-a)(c-a)} & \mathrm{for\ } a \le x \le c \\ & \\
                          \frac{2(b-x)}{(b-a)(b-c)} & \mathrm{for\ } c \le x \le b \\ & \\
                          0                         & \mathrm{for\ any\ other\ case}
                      \end{matrix}
                  \right.

Special cases

Two points known

The distribution simplifies when c=a or c=b. For example, if a=0, b=1 and c=1, then the equations above become:

 \left.\begin{matrix}f(x) &=& 2x \\ \\                                                       F(x) &=& x^2 \end{matrix}\right\} \mathrm{for\ } 0 \le x \le 1
 \begin{matrix}
  E(X) &=& \frac{2}{3} \\ & & \\
  \mathrm{Var}(X) &=& \frac{1}{18}
\end{matrix}

Distribution of two standard uniform variables

This distribution for a=0, b=1 and c=0.5 is distribution of X = \frac{X_1+X_2}{2} , where X1,X2 are two random variables with standard uniform distribution.


  f(x)=\left\{\begin{matrix}
  4x   & \mathrm{for\ }0 \le x < \frac{1}{2}   \\ \\
  4-4x & \mathrm{for\ }\frac{1}{2} \le x \le 1
  \end{matrix}\right.

  F(x)=\left\{\begin{matrix}
  2x^2       & \mathrm{for\ }0 \le x < \frac{1}{2}     \\ \\
  1-2(1-x)^2 & \mathrm{for\ }\frac{1}{2} \le x \le 1
  \end{matrix}\right.
 \begin{matrix}
  E(X) &=& \frac{1}{2} \\ \\
  \mathrm{Var}(X) &=& \frac{1}{24}
\end{matrix}

Distribution of the absolute difference of two standard uniform variables

This distribution for a=0, b=1 and c=0 is distribution of X = | X1X2 | , where X1,X2 are two random variables with standard uniform distribution.

 \begin{matrix}
  f(x)&=& 2 - 2x \qquad \mathrm{for\ } 0 \le x < 1 \\ \\
  F(x) &=&  2x - x^2 \qquad \mathrm{for\ } 0 \le x < 1 \\ \\ 
\end{matrix}
 \begin{matrix}
  E(X) &=& \frac{1}{3} \\ \\
  \mathrm{Var}(X) &=& \frac{1}{18}
\end{matrix}

Use of the distribution

The Triangular Distribution is typically used as a subjective description of a population for which there is only limited sample data, and especially in cases where the relationship between variables is known but data is scarce (possibly because of the high cost of collection). It is based on a knowledge of the minimum and maximum and an "inspired guess" [1] as to the modal value.

Business simulations

The Triangular distribution is therefore often used in business decision making, particularly in simulations. Generally, when not much is known about the distribution of an outcome, (say, only its smallest and largest values) it is possible to use the uniform distribution. But if the most likely outcome is also known, then the outcome can be simulated by a Triangular distribution. See for example under Corporate Finance.

Project management

The Triangular distribution, along with the Beta distribution, is also widely used in project management (as an input into PERT and hence critical path method (CPM)) to model events which take place within an interval defined by a minimum and maximum value.

Audio Dithering

The symmetric triangular distribution is commonly used in audio dithering, where it is called TPDF (Triangular Probability Density Function).

See also

External links

v  d  e

Probability distributions
Discrete univariate with finite support

Benford · Bernoulli · binomial · categorical · hypergeometric · Rademacher · discrete uniform · Zipf · Zipf-Mandelbrot

Discrete univariate with infinite support
Continuous univariate supported on a bounded interval, e.g. [0,1]
Continuous univariate supported on a semi-infinite interval, usually [0,∞)
Continuous univariate supported on the whole real line (-∞,∞)
Multivariate (joint)
Directional, degenerate, and singular
Families

This entry is from Wikipedia, the leading user-contributed encyclopedia. It may not have been reviewed by professional editors (see full disclaimer)

Best of the Web:

Triangular distribution

Some good "Triangular distribution" pages on the web:


Math
mathworld.wolfram.com
 

Join the WikiAnswers Q&A; community. Post a question or answer questions about "Triangular distribution" at WikiAnswers.