web.archive.org

probability distribution: Definition and Much More from Answers.com

  • ️Wed Jul 01 2015

Wikipedia: probability distribution

In probability theory, every random variable may be attributed to a function defined on a state space equipped with a probability distribution that assigns a probability to every subset (more precisely every measurable subset) of its state space in such a way that the probability axioms are satisfied. That is, probability distributions are probability measures defined over a state space instead of the sample space. A random variable then defines a probability measure on the sample space by assigning a subset of the sample space the probability of its inverse image in the state space. In other words the probability distribution of a random variable is the push forward measure of the probability distribution on the state space.

Probability distributions of real-valued random variables

Because a probability distribution Pr on the real line is determined by the probability of being in a half-open interval Pr(ab], the probability distribution of a real-valued random variable X is completely characterized by its cumulative distribution function:

F(x) = \Pr \left[ X \le x \right] \qquad \forall x \in \mathbb{R}.

Discrete probability distribution

A probability distribution is called discrete if its cumulative distribution function only increases in jumps.

The set of all values that a discrete random variable can assume with non-zero probability is either finite or countably infinite because the sum of uncountably many positive real numbers (which is the smallest upper bound of the set of all finite partial sums) always diverges to infinity. Typically, the set of possible values is topologically discrete in the sense that all its points are isolated points. But, there are discrete random variables for which this countable set is dense on the real line.

Discrete distributions are characterized by a probability mass function, p such that

F(x) = \Pr \left[X \le x \right] = \sum_{x_i \le x} p(x_i).

Continuous probability distribution

By one convention, a probability distribution is called continuous if its cumulative distribution function is continuous, which means that it belongs to a random variable X for which Pr[ X = x ] = 0 for all x in R.

Another convention reserves the term continuous probability distribution for absolutely continuous distributions. These distributions can be characterized by a probability density function: a non-negative Lebesgue integrable function f defined on the real numbers such that

F(x) = \Pr \left[ X \le x \right] = \int_{-\infty}^x f(t)\,dt

Discrete distributions and some continuous distributions (like the devil's staircase) do not admit such a density.

Terminology

The support of a distribution is the smallest closed set whose complement has probability zero.

The probability distribution of the sum of two independent random variables is the convolution of each of their distributions.

The probability distribution of the difference of two random variables is the cross-correlation of each of their distributions.

A discrete random variable is a random variable whose probability distribution is discrete. Similarly, a continuous random variable is a random variable whose probability distribution is continuous.

List of important probability distributions

Certain random variables occur very often in probability theory, in some cases due to their application to many natural and physical processes, and in some cases due to theoretical reasons such as the central limit theorem, the Poisson limit theorem, or properties such as memorylessness or other characterizations. Their distributions therefore have gained special importance in probability theory.

Discrete distributions

With finite support

  • The Bernoulli distribution, which takes value 1 with probability p and value 0 with probability q = 1 − p.
  • The Rademacher distribution, which takes value 1 with probability 1/2 and value −1 with probability 1/2.
  • The binomial distribution describes the number of successes in a series of independent Yes/No experiments.
  • The degenerate distribution at x0, where X is certain to take the value x0. This does not look random, but it satisfies the definition of random variable because although its output is determinate, its input is random. This is useful because it puts deterministic variables and random variables in the same formalism.
  • The discrete uniform distribution, where all elements of a finite set are equally likely. This is supposed to be the distribution of a balanced coin, an unbiased die, a casino roulette or a well-shuffled deck. Also, one can use measurements of quantum states to generate uniform random variables. All these are "physical" or "mechanical" devices, subject to design flaws or perturbations, so the uniform distribution is only an approximation of their behaviour. In digital computers, pseudo-random number generators are used to produce a statistically random discrete uniform distribution.
  • The hypergeometric distribution, which describes the number of successes in the first m of a series of n Yes/No experiments, if the total number of successes is known.
  • Zipf's law or the Zipf distribution. A discrete power-law distribution, the most famous example of which is the description of the frequency of words in the English language.
  • The Zipf-Mandelbrot law is a discrete power law distribution which is a generalization of the Zipf distribution.

With infinite support

Poisson distribution

Skellam distribution

Continuous distributions

Supported on a bounded interval

Beta distribution

  • The Beta distribution on [0,1], of which the uniform distribution is a special case, and which is useful in estimating success probabilities.

continuous uniform distribution

Supported on semi-infinite intervals, usually [0,∞)

chi-square distribution

Exponential distribution

Gamma distribution

Pareto distribution

Supported on the whole real line

Cauchy distribution

Laplace distribution

Levy distribution

Normal distribution

Joint distributions

For any set of independent random variables the probability density function of their joint distribution is the product of their individual density functions.

Two or more random variables on the same sample space

Matrix-valued distributions

Miscellaneous distributions

Demonstrations and activities

The SOCR resource provides web-based tools (applets) for sampling from and interacting with many of these discrete and continuous distributions. Also, a number of distribution-specific activities are provided that demonstrate the utilization of general probability distributions.

See also

Image:Bvn-small.png Probability distributions []
Univariate Multivariate
Discrete: BenfordBernoullibinomialBoltzmanncategoricalcompound Poissondiscrete phase-typedegenerateGauss-Kuzmingeometrichypergeometriclogarithmicnegative binomialparabolic fractalPoissonRademacherSkellamuniformYule-SimonzetaZipfZipf-Mandelbrot Ewensmultinomialmultivariate Polya
Continuous: BetaBeta primeCauchychi-squareDirac delta functionCoxianErlangexponentialexponential powerFfadingFermi-DiracFisher's zFisher-TippettGammageneralized extreme valuegeneralized hyperbolicgeneralized inverse GaussianHalf-logisticHotelling's T-squarehyperbolic secanthyper-exponentialhypoexponentialinverse chi-square (scaled inverse chi-square) • inverse Gaussianinverse gamma (scaled inverse gamma) • KumaraswamyLandauLaplaceLévyLévy skew alpha-stablelogisticlog-normalMaxwell-BoltzmannMaxwell speedNakagaminormal (Gaussian)normal-gammanormal inverse GaussianParetoPearsonphase-typepolarraised cosineRayleighrelativistic Breit-WignerRiceshifted GompertzStudent's ttriangulartruncated normaltype-1 Gumbeltype-2 GumbeluniformVariance-GammaVoigtvon MisesWeibullWigner semicircleWilks' lambda DirichletGeneralized Dirichlet distribution . inverse-WishartKentmatrix normalmultivariate normalmultivariate Studentvon Mises-FisherWigner quasiWishart
Miscellaneous: bimodalCantorconditionalequilibriumexponential familyInfinite divisibility (probability)location-scale familymarginalmaximum entropyposteriorpriorquasisamplingsingular
Statistics
Descriptive statistics Mean (Arithmetic, Geometric) - Median - Mode - Power - Variance - Standard deviation
Inferential statistics Hypothesis testing - Significance - Null hypothesis/Alternate hypothesis - Error - Z-test - Student's t-test - Maximum likelihood - Standard score/Z score - P-value - Analysis of variance
Survival analysis Survival function - Kaplan-Meier - Logrank test - Failure rate - Proportional hazards models
Probability distributions Normal (bell curve) - Poisson - Bernoulli
Correlation Confounding variable - Pearson product-moment correlation coefficient - Rank correlation (Spearman's rank correlation coefficient, Kendall tau rank correlation coefficient)
Regression analysis Linear regression - Nonlinear regression - Logistic regression

External links

Wikimedia Commons has media related to:

This entry is from Wikipedia, the leading user-contributed encyclopedia. It may not have been reviewed by professional editors (see full disclaimer)