automobile: Definition and Much More from Answers.com
- ️Sat Mar 03 2007
n.
A self-propelled passenger vehicle that usually has four wheels and an internal-combustion engine, used for land transport. Also called motorcar.
adj.
Of or relating to automobiles; automotive.
[French : Greek auto-, auto- + French mobile, mobile (from Old French; see mobile).]
automobilist au'to·mo·bil'ist n.
How Products are Made: How is an automobile made?
Background
In 1908 Henry Ford began production of the Model T automobile. Based on his original Model A design first manufactured in 1903, the Model T took five years to develop. Its creation inaugurated what we know today as the mass production assembly line. This revolutionary idea was based on the concept of simply assembling interchangeable component parts. Prior to this time, coaches and buggies had been hand-built in small numbers by specialized craftspeople who rarely duplicated any particular unit. Ford's innovative design reduced the number of parts needed as well as the number of skilled fitters who had always formed the bulk of the assembly operation, giving Ford a tremendous advantage over his competition.
Ford's first venture into automobile assembly with the Model A involved setting up assembly stands on which the whole vehicle was built, usually by a single assembler who fit an entire section of the car together in one place. This person performed the same activity over and over at his stationary assembly stand. To provide for more efficiency, Ford had parts delivered as needed to each work station. In this way each assembly fitter took about 8.5 hours to complete his assembly task. By the time the Model T was being developed Ford had decided to use multiple assembly stands with assemblers moving from stand to stand, each performing a specific function. This process reduced the assembly time for each fitter from 8.5 hours to a mere 2.5 minutes by rendering each worker completely familiar with a specific task.
Ford soon recognized that walking from stand to stand wasted time and created jam-ups in the production process as faster workers overtook slower ones. In Detroit in 1913, he solved this problem by introducing the first moving assembly line, a conveyor that moved the vehicle past a stationary assembler. By eliminating the need for workers to move between stations, Ford cut the assembly task for each worker from 2.5 minutes to just under 2 minutes; the moving assembly conveyor could now pace the stationary worker. The first conveyor line consisted of metal strips to which the vehicle's wheels were attached. The metal strips were attached to a belt that rolled the length of the factory and then, beneath the floor, returned to the beginning area. This reduction in the amount of human effort required to assemble an automobile caught the attention of automobile assemblers throughout the world. Ford's mass production drove the automobile industry for nearly five decades and was eventually adopted by almost every other industrial manufacturer. Although technological advancements have enabled many improvements to modern day automobile assembly operations, the basic concept of stationary workers installing parts on a vehicle as it passes their work stations has not changed drastically over the years.
Raw Materials
Although the bulk of an automobile is virgin steel, petroleum-based products (plastics and vinyls) have come to represent an increasingly large percentage of automotive components. The light-weight materials derived from petroleum have helped to lighten some models by as much as thirty percent. As the price of fossil fuels continues to rise, the preference for lighter, more fuel efficient vehicles will become more pronounced.
Design
Introducing a new model of automobile generally takes three to five years from inception to assembly. Ideas for new models are developed to respond to unmet pubic needs and preferences. Trying to predict what the public will want to drive in five years is no small feat, yet automobile companies have successfully designed automobiles that fit public tastes. With the help of computer-aided design equipment, designers develop basic concept drawings that help them visualize the proposed vehicle's appearance. Based on this simulation, they then construct clay models that can be studied by styling experts familiar with what the public is likely to accept. Aerodynamic engineers also review the models, studying air-flow parameters and doing feasibility studies on crash tests. Only after all models have been reviewed and accepted are tool designers permitted to begin building the tools that will manufacture the component parts of the new model.
The Manufacturing
Process
Components
- The automobile assembly plant represents only the final phase in the process of manufacturing an automobile, for it is here that the components supplied by more than 4,000 outside suppliers, including company-owned parts suppliers, are brought together for assembly, usually by truck or railroad. Those parts that will be used in the chassis are delivered to one area, while those that will comprise the body are unloaded at another.
Chassis
- The typical car or truck is constructed from the ground up (and out). The frame forms the base on which the body rests and from which all subsequent assembly components follow. The frame is placed on the assembly line and clamped to the conveyer to prevent shifting as it moves down the line. From here the automobile frame moves to component assembly areas where complete front and rear suspensions, gas tanks, rear axles and drive shafts, gear boxes, steering box components, wheel drums, and braking systems are sequentially installed.
- An off-line operation at this stage of production mates the vehicle's engine with its transmission. Workers use robotic arms to install these heavy components inside the engine compartment of the frame. After the engine and transmission are installed, a worker attaches the radiator, and another bolts it into place. Because of the nature of these heavy component parts, articulating robots perform all of the lift and carry operations while assemblers using pneumatic wrenches bolt component pieces in place. Careful ergonomic studies of every assembly task have provided assembly workers with the safest and most efficient tools available.
Body
- Generally, the floor pan is the largest body component to which a multitude of panels and braces will subsequently be either welded or bolted. As it moves down the assembly line, held in place by clamping fixtures, the shell of the vehicle is built. First, the left and right quarter panels are robotically disengaged from pre-staged shipping containers and placed onto the floor pan, where they are stabilized with positioning fixtures and welded.
- The front and rear door pillars, roof, and body side panels are assembled in the same fashion. The shell of the automobile assembled in this section of the process lends itself to the use of robots because articulating arms can easily introduce various component braces and panels to the floor pan and perform a high number of weld operations in a time frame and with a degree of accuracy no human workers could ever approach. Robots can pick and load 200-pound (90.8 kilograms) roof panels and place them precisely in the proper weld position with tolerance variations held to within .001 of an inch. Moreover, robots can also tolerate the smoke, weld flashes, and gases created during this phase of production.
- As the body moves from the isolated weld area of the assembly line, subsequent body components including fully assembled doors, deck lids, hood panel, fenders, trunk lid, and bumper reinforcements are installed. Although robots help workers place these components onto the body shell, the workers provide the proper fit for most of the bolt-on functional parts using pneumatically assisted tools.
Paint
- Prior to painting, the body must pass through a rigorous inspection process, the body in white operation. The shell of the vehicle passes through a brightly lit white room where it is fully wiped down by visual inspectors using cloths soaked in hi-light oil. Under the lights, this oil allows inspectors to see any defects in the sheet metal body panels. Dings, dents, and any other defects are repaired right on the line by skilled body repairmen. After the shell has been fully inspected and repaired, the assembly conveyor carries it through a cleaning station where it is immersed and cleaned of all residual oil, dirt, and contaminants.
- As the shell exits the cleaning station it goes through a drying booth and then through an undercoat dip—an electrostatically charged bath of undercoat paint (called the E-coat) that covers every nook and cranny of the body shell, both inside and out, with primer. This coat acts as a substrate surface to which the top coat of colored paint adheres.
- After the E-coat bath, the shell is again dried in a booth as it proceeds on to the final paint operation. In most automobile assembly plants today, vehicle bodies are spray-painted by robots that have been programmed to apply the exact amounts of paint to just the right areas for just the right length of time. Considerable research and programming has gone into the dynamics of robotic painting in order to ensure the fine "wet" finishes we have come to expect. Our robotic painters have come a long way since Ford's first Model Ts, which were painted by hand with a brush.
- Once the shell has been fully covered 1 V with a base coat of color paint and a clear top coat, the conveyor transfers the bodies through baking ovens where the paint is cured at temperatures exceeding 275 degrees Fahrenheit (135 degrees Celsius). After the shell leaves the paint area it is ready for interior assembly.
Interior assembly
- The painted shell proceeds through the interior assembly area where workers assemble all of the instrumentation and wiring systems, dash panels, interior lights, seats, door and trim panels, headliners, radios, speakers, all glass except the automobile windshield, steering column and wheel, body weatherstrips, vinyl tops, brake and gas pedals, carpeting, and front and rear bumper fascias.
- Next, robots equipped with suction cups remove the windshield from a shipping container, apply a bead of urethane sealer to the perimeter of the glass, and then place it into the body windshield frame. Robots also pick seats and trim panels and transport them to the vehicle for the ease and efficiency of the assembly operator. After passing through this section the shell is given a water test to ensure the proper fit of door panels, glass, and weatherstripping. It is now ready to mate with the chassis.
Mate
- The chassis assembly conveyor and the body shell conveyor meet at this stage of production. As the chassis passes the body conveyor the shell is robotically lifted from its conveyor fixtures and placed onto the car frame. Assembly workers, some at ground level and some in work pits beneath the conveyor, bolt the car body to the frame. Once the mating takes place the automobile proceeds down the line to receive final trim components, battery, tires, anti-freeze, and gasoline.
- The vehicle can now be started. From here it is driven to a checkpoint off the line, where its engine is audited, its lights and horn checked, its tires balanced, and its charging system examined. Any defects discovered at this stage require that the car be taken to a central repair area, usually located near the end of the line. A crew of skilled trouble-shooters at this stage analyze and repair all problems. When the vehicle passes final audit it is given a price label and driven to a staging lot where it will await shipment to its destination.
Quality Control
All of the components that go into the automobile are produced at other sites. This means the thousands of component pieces that comprise the car must be manufactured, tested, packaged, and shipped to the assembly plants, often on the same day they will be used. This requires no small amount of planning. To accomplish it, most automobile manufacturers require outside parts vendors to subject their component parts to rigorous testing and inspection audits similar to those used by the assembly plants. In this way the assembly plants can anticipate that the products arriving at their receiving docks are Statistical Process Control (SPC) approved and free from defects.
Once the component parts of the automobile begin to be assembled at the automotive factory, production control specialists can follow the progress of each embryonic automobile by means of its Vehicle Identification Number (VIN), assigned at the start of the production line. In many of the more advanced assembly plants a small radio frequency transponder is attached to the chassis and floor pan. This sending unit carries the VIN information and monitors its progress along the assembly process. Knowing what operations the vehicle has been through, where it is going, and when it should arrive at the next assembly station gives production management personnel the ability to electronically control the manufacturing sequence. Throughout the assembly process quality audit stations keep track of vital information concerning the integrity of various functional components of the vehicle.
This idea comes from a change in quality control ideology over the years. Formerly, quality control was seen as a final inspection process that sought to discover defects only after the vehicle was built. In contrast, today quality is seen as a process built right into the design of the vehicle as well as the assembly process. In this way assembly operators can stop the conveyor if workers find a defect. Corrections can then be made, or supplies checked to determine whether an entire batch of components is bad. Vehicle recalls are costly and manufacturers do everything possible to ensure the integrity of their product before it is shipped to the customer. After the vehicle is assembled a validation process is conducted at the end of the assembly line to verify quality audits from the various inspection points throughout the assembly process. This final audit tests for properly fitting panels; dynamics; squeaks and rattles; functioning electrical components; and engine, chassis, and wheel alignment. In many assembly plants vehicles are periodically pulled from the audit line and given full functional tests. All efforts today are put forth to ensure that quality and reliability are built into the assembled product.
The Future
The development of the electric automobile will owe more to innovative solar and aeronautical engineering and advanced satellite and radar technology than to traditional automotive design and construction. The electric car has no engine, exhaust system, transmission, muffler, radiator, or spark plugs. It will require neither tune-ups nor—truly revolutionary—gasoline. Instead, its power will come from alternating current (AC) electric motors with a brushless design capable of spinning up to 20,000 revolutions/minute. Batteries to power these motors will come from high performance cells capable of generating more than 100 kilowatts of power. And, unlike the lead-acid batteries of the past and present, future batteries will be environmentally safe and recyclable. Integral to the braking system of the vehicle will be a power inverter that converts direct current electricity back into the battery pack system once the accelerator is let off, thus acting as a generator to the battery system even as the car is driven long into the future.
The growth of automobile use and the increasing resistance to road building have made our highway systems both congested and obsolete. But new electronic vehicle technologies that permit cars to navigate around the congestion and even drive themselves may soon become possible. Turning over the operation of our automobiles to computers would mean they would gather information from the roadway about congestion and find the fastest route to their instructed destination, thus making better use of limited highway space. The advent of the electric car will come because of a rare convergence of circumstance and ability. Growing intolerance for pollution combined with extraordinary technological advancements will change the global transportation paradigm that will carry us into the twenty-first century.
Where To Learn More
Books
Abernathy, William. The Productivity Dilemma: Roadblock to Innovation in the Automobile Industry. Johns Hopkins University Press, 1978.
Gear Design, Manufacturing & Inspection Manual. Society of Manufacturing Engineers, Inc., 1990.
Hounshell, David. From the American System to Mass Production. Johns Hopkins University Press, 1984.
Lamming, Richard. Beyond Partnership: Strategies for Innovation & Lean Supply. Prentice Hall, 1993.
Making the Car. Motor Vehicle Manufacturers Association of the United States, 1987.
Mortimer, J., ed. Advanced Manufacturing in the Automotive Industry. Springer-Verlag New York, Inc., 1987.
Mortimer, John. Advanced Manufacturing in the Automotive Industry. Air Science Co., 1986.
Nevins, Allen and Frank E. Hill. Ford: The Times, The Man, The Company. Scribners, 1954.
Seiffert, Ulrich. Automobile Technology of the Future. Society of Automotive Engineers, Inc., 1991.
Sloan, Alfred P. My Years with General Motors. Doubleday, 1963.
Periodicals
"The Secrets of the Production Line," The Economist. October 17, 1992, p. S5.
[Article by: Rick Bockmiller]
A self-propelled land vehicle, usually having four wheels and an internal combustion engine, used primarily for personal transportation. Other types of motor vehicles include buses, which carry large numbers of commercial passengers, and medium- and heavy-duty trucks, which carry heavy or bulky loads of freight or other goods and materials. Instead of being carried on a truck, these loads may be placed on a semitrailer, and sometimes also a trailer, forming a tractor-trailer combination which is pulled by a truck tractor. See also Bus; Truck.
The automobile body is the assembly of sheet-metal, fiberglass, plastic, or composite-material panels together with windows, doors, seats, trim and upholstery, glass, and other parts that form enclosures for the passenger, engine, and luggage compartments. The assembled body structure may attach through rubber mounts to a separate or full frame (body-on-frame construction), or the body and frame may be integrated (unitized-body construction). In the latter method, the frame, body parts, and floor pan are welded together to form a single unit that has energy-absorbing front and rear structures, and anchors for the engine, suspension, steering, and power-train components. A third type of body construction is the space frame which is made of welded steel stampings. Similar to the tube chassis and roll cage combination used in race-car construction, non-load-carrying plastic outer panels fasten to the space frame to form the body. See also Composite material; Sheet-metal forming.
The frame is the main structural member to which all other mechanical chassis parts and the body are assembled to make a complete vehicle. In older vehicle designs, the frame is a separate rigid structure; newer passenger-car designs have the frame and body structure combined into an integral unit, or unitized body. Subframes and their assembled components attach to the side rails at the front and rear of the unitized body. The front subframe carries the engine, transmission or transaxle, lower front suspension, and other mechanical parts. The rear subframe, if used, carries the rear suspension and rear axle.
The suspension supports the weight of the vehicle, absorbs road shocks, transmits brake-reaction forces, helps maintain traction between the tires and the road, and holds the wheels in alignment while allowing the driver to steer the vehicle over a wide range of speed and load conditions. The action of the suspension increases riding comfort, improves driving safety, and reduces strain on vehicle components, occupants, and cargo. The springs may be coil, leaf, torsion bar, or air. Most automotive vehicles have coil springs at the front and either coil or leaf springs at the rear. See also Automotive suspension.
The steering system enables the driver to turn the front wheels left or right to control the direction of vehicle travel. The rotary motion of the steering wheel is changed to linear motion in the steering gear, which is located at the lower end of the steering shaft. The linear motion is transferred through the steering linkage to the steering knuckles, to which the front wheels are mounted. Steering systems are classed as either manual steering or power steering, with power assist provided hydraulically or by an electric motor.
A brake is a device that uses a controlled force to reduce the speed of or stop a moving vehicle, or to hold the vehicle stationary. The automobile has a friction brake at each wheel. When the brake is applied, a stationary surface moves into contact with a moving surface. The resistance to relative motion or rubbing action between the two surfaces slows the moving surface, which slows and stops the vehicle.
The engine supplies the power to move the vehicle. The power is available from the engine crankshaft after a fuel, usually gasoline, is burned in the engine cylinders. Most automotive engines are located at the front of the vehicle and drive either the rear wheels or the front wheels through a drive train or power train made up of gears, shafts, and other mechanical and hydraulic components. Most automotive vehicles are powered by a spark-ignition four-stroke-cycle internal combustion engine. The inline four-cylinder engine and V-type six-cylinder engine are the most widely used, with V-8 engines also common. Other automotive engines have three, five, ten, and twelve cylinders. Some passenger cars and trucks have diesel engines. Some automotive spark-ignition and diesel engines are equipped with a supercharger or turbocharger. See also Automotive engine; Diesel engine; Engine; Ignition system; Supercharger; Turbocharger.
Most automotive engines have electronic fuel injection instead of a carburetor. A computer-controlled electronic engine control system automatically manages various emissions devices and numerous functions of engine operation, including the fuel injection and spark timing. This allows optimizing power and fuel economy while minimizing exhaust emissions. See also Carburetor; Control systems; Fuel injection.
The power available from the engine crankshaft to do work is transmitted to the drive wheels by the power train, or drive train. In the front-engine rear-drive vehicle, the power train consists of a clutch and manual transmission, or a torque converter and an automatic transmission; driveshafts and Hooke (Cardan) universal joints; and rear drive axle that includes the final drive, differential, and wheel axle shafts. In the typical front-engine front-drive vehicle, the power train consists of a clutch and manual transaxle, or a torque converter and an automatic transaxle. The final drive and differential are designed into the transaxle, and drive the wheels through half-shafts with constant-velocity (CV) universal joints. See also Clutch; Gear; Universal joint.
The transmission is the device in the power train that provides different forward gear ratios between the engine and drive wheels, as well as neutral and reverse. The two general classifications of transmission are manual transmission, which the driver shifts by hand, and automatic transmission, which shifts automatically. To shift a manual transmission, the clutch must first be disengaged. However, some vehicles have automatic clutch disengagement for manual transmissions, while other vehicles have a limited manual-shift capability for automatic transmissions. See also Automotive transmission.
In the power train, the final drive is the speed-reduction gear set that drives the differential. The final drive is made up of a large ring gear driven by a smaller pinion, or pinion gear. This provides a gear reduction of about 3:1; the exact value can be tailored to the engine, transmission, weight of the vehicle, and performance or fuel economy desired.
In drive axles, the differential is the gear assembly between axle shafts that permits one wheel to rotate at a speed different from that of the other (if necessary), while transmitting torque from the final-drive ring gear to the axle shafts. When the vehicle is cornering or making a turn, the differential allows the outside wheel to travel a greater distance than the inside wheel; otherwise, one wheel would skid, causing tire wear and partial loss of control. See also Differential.
A wheel is a disc or a series of spokes with a hub at the center and a rim around the outside for mounting of the tire. The wheels of a vehicle must have sufficient strength and resiliency to carry the weight of the vehicle, transfer driving and braking torque to the tires, and withstand side thrusts over a wide range of speed and road conditions. Wheel size is primarily determined by the load-bearing strength of the tire.
The use of solid-state electronic devices in the automobile began during the 1960s, when the electromechanical voltage regulator of the alternator, was replaced by a transistorized voltage regulator. This was followed in the 1970s by electronic ignition, fuel injection, and cruise control. Since then, electronic devices and systems on the automobile have proliferated. These include engine and power train control, air bags, antilock braking, traction control, suspension and ride control, remote keyless entry, memory seats, driver information and navigation systems, cellular telephone and mobile communications systems, and onboard diagnostics. See also Electronic display; Feedback circuit; Satellite navigation systems.
The self-diagnostic capability of the vehicle computer, power-train or engine control module, or system controller may be aided by a memory that stores information about malfunctions that have occurred and perhaps temporarily disappeared. When recalled from the memory, this information can help the service technician diagnose and repair the vehicle more quickly, accurately, and reliably.
Four-wheeled automotive vehicle designed for passenger transportation and commonly propelled by an internal-combustion engine using a volatile fuel. The modern automobile consists of about 14,000 parts and comprises several structural and mechanical systems. These include the steel body, containing the passenger and storage space, which sits on the chassis, or steel frame; the internal-combustion gasoline engine, which powers the car by means of a transmission; the steering and braking systems, which control the car's motion; and the electrical system, which includes a battery, alternator, and other devices. Subsystems involve fuel, exhaust, lubrication, cooling, suspension, and tires. Though experimental vehicles were built as early as the 18th century, not until the 1880s did Gottlieb Daimler and Karl Benz in Germany begin separately to manufacture cars commercially. In the U.S., James and William Packard and Ransom Olds were among the first auto manufacturers, and by 1898 there were 50 U.S. manufacturers. Some early cars operated by steam engine, such as those made from c. 1902 by Francis E. Stanley and Freelan O. Stanley. The internal-combustion engine was used by Henry Ford when he introduced the Model T in 1908; Ford would soon revolutionize the industry with his use of the assembly line. In the 1930s European manufacturers began to make small, affordable cars such as the Volkswagen. In the 1950s and '60s U.S. automakers produced larger, more luxurious cars with more automatic features. In the 1970s and '80s Japanese manufacturers exported their small, reliable, fuel-efficient cars worldwide, and their increasing popularity spurred U.S. automakers to produce similar models. Sport-utility vehicles (SUVs) and minivans, with their greater cargo and passenger capacities, became highly popular in the U.S. during the 1990s and led to a resurgence in sales of domestic vehicles. By the start of the 21st century, China had surpassed all European nations to become the third largest automobile market behind the U.S. and Japan. See also axle; brake; bus; carburetor; electric automobile; fuel injection; motorcycle; truck.
For more information on automobile, visit Britannica.com.
Fine examples of living beliefs about good and bad luck. Some owners hang all sorts of charms and mascots from the driving mirror or from their key-rings; green cars are rarely seen, because this colour is widely feared—yet, oddly, British racing cars were traditionally green. Red, on the other hand, is safe and lucky. Beliefs about numbers are readily applied to cars; recently there have been press items about a supposedly unlucky Ford Capri with the ‘Satanic’ number 666 in its registration (Telegraph (15 Feb. 1997); Mirror (31 July 1998)). If a car persistently gives trouble, some say ‘it must have been made on a Friday’.
A good many contemporary legends involve cars. Two of the earliest to be identified are the famous Vanishing Hitchhiker (a pathetic ghost story), and ‘The Stolen Corpse’, a macabre joke about holiday-makers who try to smuggle the body of an elderly relative home on the roof-rack, only to have both car and corpse stolen. There are others about cars in which a suicide occurred, where blood-stains or a stench of death remain permanently; about maniacs and murderers either lurking inside one's car or trying to enter it when parked; about ghost cars haunting roads where they crashed; about ghostly hands gripping the steering-wheel. Old tales about witches immobilizing horse-drawn vehicles are echoed by modern ones where a car is inexplicably halted by a UFO.
There are innumerable anecdotes about drivers and driving, and about particular makes of car; some are mocking, while others, especially about the Rolls Royce, express awed admiration (Sanderson, 1969: 246-7). Back window stickers are a good medium for jokes, either against oneself (‘When I grow up, I'm going to be a Porsche’, seen on a Mini), or against other drivers (‘This may be small, but it's mine, it's paid for, and it's ahead of yours’).
Bibliography
The full bibliography list is available here.
- Stewart Sanderson, Folklore 80 (1969), 241-52. For discussion based on American versions, see Jan Brunvand, The Vanishing Hitchhiker (1981), and The Choking Doberman (1984)
During the first half of the twentieth century, the automobile evolved from a marginal curiosity to the dominant mode of ground transportation in the United States, spawning a vast network of national interstate highways, spurring the postwar suburban sprawl, opening up unprecedented possibilities of mobility for the average Amreican, but also spawning a host of stubborn social ills: air pollution, traffic jams, road rage, and even a major contribution to global climate change.
Origins and Early Development
Although a smattering of inventors on both sides of the Atlantic worked on developing various forms of automotive technology between 1860 and 1890, German and French inventors were well ahead of their American counterparts by the 1890s in development of the gasoline-powered automobile. In Germany, Gottlieb Daimler and his assistant William Maybach had perfected a four-cycle internal-combustion engine by 1885 and had built four experimental vehicles by 1889. Karl Benz built his first car in 1886 and by 1891 had developed the automobile to the stage of commercial feasibility. In France, Emile Constant Levassor created the basic mechanical arrangement of the modern motorcar in 1891 by placing the engine in front of the chassis, making it possible to accommodate larger, more powerful engines. By 1895, when Levassor drove a car over the 727-mile course of the Paris-Bordeaux-Paris race at the then incredible speed of fifteen miles per hour, automobiles regularly toured the streets of Paris.
The United States lagged well behind. Credit for the first successful American gasoline automobile is generally given to the winners of the Times-Herald race held on Thanksgiving Day 1895: Charles E. Duryea and J. Frank Duryea of Springfield, Mass., bicycle mechanics who built their first car in 1893 after reading a description of the Benz car in Scientific American in 1889. It is now known that several American inventors built experimental gasoline automobiles prior to the Duryeas, but it was the Duryeas who initiated the manufacture of motor vehicles for a commercial market in the United States in 1896. Allowing for changes of name and early failures, thirty American automobile manufacturers produced an estimated 2,500 motor vehicles in 1899, the first year for which the United States Census of Manufactures compiled separate figures for the automobile industry. The most important of these early automobile manufacturers in volume of product was the Pope Manufacturing Company of Hartford, Conn., also the nation's leading bicycle manufacturer.
After these inauspicious beginnings, the United States emerged in the first decade of the twentieth century as the world's leading car culture. The market for motor-cars expanded rapidly as numerous races, tours, and tests demonstrated their strengths, and three transcontinental crossings by automobile in 1903 inaugurated informal long-distance touring by the average driver. The most important organized reliability runs were the Glidden Tours, sponsored annually between 1905 and 1913 by the American Automobile Association. Speed tests and track and road races gave manufacturers publicity for their products and contributed much to the development of automotive technology. Among the early competitions stressing speed, none excited the popular imagination more than the Vanderbilt Cup road races (1904–1916).
Despite a brief but intense reaction between 1900 and 1906 against the arrogance displayed by the owners of automobiles, many of whom sped dangerously through city neighborhoods, kicked up dust on rural roads, and seemed to delight in their ability to spook horses, many Americans displayed great enthusiasm for the motorcar from its introduction. Municipal and state regulations concerning motor vehicles developed slowly, reflected the thinking of the automobile clubs, and typically imposed lighter restrictions than those in European nations. Years before Henry Ford conceived of his universal car for the masses, few people doubted that automobiles were cleaner and safer than the old gray mare. The automobile seemed to fire the imagination of the American people, who provided a large and ready market for the nascent industry's products.
Americans had registered some 458,500 motor vehicles by 1910, making the United States the world's fore-most automobile culture. Responding to an unprecedented seller's market for an expensive item, between 1900 and 1910 automobile manufacturing leaped from one hundred and fiftieth to twenty-first in value of product among American industries and became more important to the national economy than the wagon and carriage industry by all measurable economic criteria.
Automobile Manufacturing
Because the automobile was a combination of relatively standard components already being produced for other uses—stationary and marine gasoline engines, and carriage bodies and wheels, for example—early automobile manufacturers merely assembled available components to supply finished cars. The small amount of capital and the slight technical and managerial expertise needed to enter automobile manufacturing were most commonly diverted from other closely related business activities—especially from machine shops and from the bicycle, carriage, and wagon trades. Assemblers met their capital requirements mainly by shifting the burden to parts makers, distributors, and dealers. Manufacturers typically required 20 percent advance cash deposits on orders, with full payment upon delivery; and the assembly process took well less than the thirty-to ninety-day credit period that parts makers allowed. These propitious conditions attracted some 515 companies into automobile manufacturing by 1908, the year in which Henry Ford introduced the Model T and William C. Durant founded General Motors.
The Association of Licensed Automobile Manufacturers (ALAM) attempted to restrict entry into, and severely limit competition within, the automobile industry. This trade association formed in 1903 to enforce an 1895 patent on the gasoline automobile originally applied for in 1879 by George B. Selden, a Rochester, New York, patent attorney. The ALAM, which tended to emphasize higher-priced models that brought high unit profits, sued the Ford Motor Company and several other unlicensed "independents," who were more committed to the volume production of low-priced cars and who made and sold cars without paying royalties to the association. A 1911 written decision sustained the validity of the Selden patent but declared that Ford and others had not infringed upon it because the patent only covered automobiles with a narrowly defined, outdated engine type. To avoid other patent controversies, the newly formed National Automobile Chamber of Commerce (which became the Automobile Manufacturers Association in 1932 and the Motor Vehicle Manufacturers Association in 1972) instituted a cross-licensing agreement among its members in 1914. This patent-sharing arrangement proved to be an effective antimonopoly measure and prevented companies from using the patent system to develop monopoly power within the industry.
Although the pending Selden suit discouraged high-volume production before 1911, some manufacturers experimented with quantity production techniques from an early date. Ransom E. Olds initiated volume production of a low-priced car, but the surrey-influenced design of his $650, one-cylinder, curved-dash Olds (1901–1906) was soon outmoded. The $600, four-cylinder Ford Model N (1906–1907) deserves credit as the first reliable, powerful, low-priced car. The rugged Ford Model T (1908–1927), remarkably adapted to the wretched rural roads of the day, gained almost immediate popularity and caused Ford's share of the market for new cars to skyrocket to roughly 50 percent by the outbreak of World War I.
Mass production techniques—especially the moving-belt assembly line perfected at the Ford Highland Park, Mich., plant in 1913–1914—progressively reduced the price of the Model T to a low of $290 ($2,998 in 2002 dollars) for the touring car by 1927, placing reliable automobiles within reach of most middle-class Americans. Equally significantly, Ford production methods, when applied to the manufacture of many other items, spurred a shift from an economy of scarcity to one of affluence, created a new class of semiskilled industrial workers and opened new opportunities for remunerative industrial employment to unskilled workers. The five-dollar ($89.95 in 2002 dollars), eight-hour day instituted at Ford in 1914—which roughly doubled wages for a shorter workday—dramatically suggested that mass production necessitated mass consumption and mass leisure.
To compete with the Model T's progressively lower prices, the makers of moderately priced cars followed the lead of the piano industry and began extending installment credit to consumers, lowering a major bar to purchase. More than 110 automobile finance corporations existed by 1921, most notably the General Motors Acceptance Corporation, founded in 1919, and by 1926 time sales accounted for about three-fourths of all automobile sales. By the late 1920s, critics complained that this kind of buying, which became increasingly popular for other types of merchandise, too, was causing an erosion of the values of hard work, thrift, and careful saving sanctified in the Protestant ethic and so central to the socioeconomic milieu of perennial scarcity predicted by the classical economists.
Effect of the Automobile
During the 1920s and 1930s the mass adoption of the automobile in the United States left few facets of everyday life untouched, and the young technology became deeply woven into the fabric of the country's economy, mobility patterns, and culture. As cities became larger and denser, industries increasingly sought cheap land on the urban periphery where they could erect the large, horizontally configured factories that mass production techniques necessitated. Wealthier urbanites, too, dispersed into out-lying suburban areas, closely trailed by retail stores seeking their patronage. Across rural America, larger trading areas hastened the death of the village general store, cut into small local banks' deposits, forced the mail-order houses to open suburban retail stores, and prompted the large-scale reorganization of both retail and wholesale trades, particularly as they fought to stay afloat during the Great Depression. Urban amenities, too, reached into formerly isolated rural areas, most notably in the form of far better medical care and consolidated schools. The Model T, the motor truck, and the motorized tractor also played a role in the reorganization of the agricultural sector as large-scale agribusiness began to replace the traditional family farm.
Large-scale use of automobiles had a tremendous effect on the cities, too. Public health benefited as horses disappeared from cities; but street life became increasingly hazardous, especially for playing children, and automobile accidents became a major cause of deaths and permanent disabilities. Modern city planning and traffic engineering arose to meet growing traffic and parking problems; and attempts to accommodate the motorcar through longer blocks, wider streets, and narrower sidewalks strained municipal budgets even as they undercut the tax base by encouraging residential dispersal. Parents complained that automobiles undercut their authority by moving courtship from the living room into the rumble seat; police complained that getaway cars made it more difficult to catch crooks. Recreational activities changed, too, as the automobile vacation to the seashore or the mountains became institutionalized and as the Sunday golf game or drive became alternatives to church attendance, the family dinner, and a neighborhood stroll.
By the mid-1920s automobile manufacturing ranked first in value of product and third in value of exports among American industries. The automobile industry had become the lifeblood of the petroleum, steel, plate glass, rubber, and lacquer industries, and the rise of many new small businesses, such as service stations and tourist accommodations, depended on the 26.7 million motor vehicles registered in the United States in 1929—one for every 4.5 persons—and the estimated 198 billion miles they traveled. Construction of streets and highways was the second largest item of governmental expenditure during the 1920s, accounting in 1929 alone for over $2.2 billion in road expenditures, financed in part by $849 million in special motor vehicle taxes, $431 million in gasoline taxes, and the steady expansion of the federal-aid road system that began dispersing funds in 1916.
Improvements in Technology
Improved roads and advances in automotive technology ended the Model T era. As the 1920s wore on, consumers came to demand much more than the Model T's low-cost basic transportation. The self-starter, which superseded the hand crank, gained rapid acceptance after 1911. Closed cars increased from 10.3 percent of production in 1919 to 82.8 percent in 1927, making automobiles year-round, all-weather vehicles. Ethyl gasoline, octane-rated fuels, and better crankshaft balancing led to the high-compression engine in the mid-1920s. By then four-wheel brakes, "bal-loon" tires, and wishbone front-wheel suspension provided a smoother, safer ride. Mass-produced cars of all colors became possible after quick-drying Duco lacquer made its debut in the "True Blue" of 1924 Oakland. By the mid-1920s, Chevrolet offered a larger, more powerful, and faster six-cylinder car costing only a few hundred dollars more than a Model T.
Thus, Henry Ford's phenomenally successful market strategy—a single, static model at an ever-decreasing price—became outmoded in the 1920s. In its place emerged the General Motors strategy, pioneered by Alfred P. Sloan, Jr., of blanketing the market with cars in several price ranges, constantly upgrading product through research and testing, and changing models annually. And while Henry Ford ran his company as an extension of his personality, General Motors developed the decentralized, multidivisional structure of the modern industrial corporation, becoming the prototype, widely copied after World War II, of the rational, depersonalized business organization run by a technostructure.
Competition sharpened in the late 1920s as the market approached saturation. Replacement demand outpaced demand from initial owners and multiple-car owners combined in 1927, and in 1929 total production peaked at 5.3 million motor vehicles—not again equaled until 1949. The inadequate income distribution of Coolidge prosperity meant a growing backlog of used cars on dealers' lots, and only about a third of all dealers were making money. A trend toward oligopoly in the automobile industry, observable since 1912, accelerated as economies of scale and the vertical integration of operations became more essential for survival. The number of active automobile manufacturers dropped from 108 to 44 between 1920 and 1929; Ford, General Motors, and Chrysler combined for about 80 percent of the industry's output. The 1930s depression shook out most of the remaining independents. Despite mergers among the independents that survived into the post–World War II period, in the mid-1970s only American Motors (formed from Nash-Kelvinator and Hudson in 1954) survived to challenge Detroit's Big Three. New firms, such as Kaiser-Frazer and Tucker, failed in the postwar industry.
The major innovations in modern automotive technology not yet incorporated by the late 1920s were the all-steel body, the infinitely variable automatic transmission, and drop-frame construction, which placed the passenger compartment between rather than upon the axles, lowering the car's height and center of gravity. Increasingly, since the 1930s, auto executives placed emphasis on styling, which the Chrysler "Airflow" models pioneered in the 1930s and which the 1947 Studebaker exemplified. The automatic transmission, introduced in the 1939 Oldsmobile, had by the 1970s become standard equipment along with power brakes, power steering, radios, and air conditioning. A horsepower race in the 1950s, spurred by the high-compression, overhead-cam, V-8 engine, culminated in the "muscle cars" of the late 1960s.
But mounting consumer demand throughout the 1960s for the economical Volkswagen, a number of Japanese-built compacts, and domestic models such as the Nash Rambler and the Ford Mustang reversed, at least temporarily, the industry trend toward larger, more powerful, and more expensive cars, particularly during the energy crises beginning in 1973 and 1979. The major innovations of the 1980s and 1990s grew out of new computer-aided engineering (CAE), design (CAD), and manufacturing (CAM), which helped manufacturers streamline production, reduce the cost and time required to introduce new models, and lower drag coefficients of new car designs. Engineers also made use of electronic sensors and controls, along with new technologies such as fast-burn/lean-burn engines, turbochargers, and continuously variable transmissions, to improve car and engine performance.
The Post–world War II Industry
Before the mid-1980s, the post–World War II American automobile industry could be considered a technologically stagnant industry, though it progressively refined its product and automated its assembly lines. Neither motorcars nor the methods of manufacturing them changed fundamentally over the next generation. Many of the most promising improvements in the internal-combustion engine—such as the Wankel, the stratified charge, and the split-cycle rotary engines—were pioneered abroad, as were the first significant attempts to depart from traditional assembly-line production. Common Market and Japanese producers steadily encroached upon the dominant American manufacturers, who responded to foreign competition by cutting labor costs—heightening factory regimentation, automating assembly lines, and building overseas subsidiaries. Detroit's share of the world market for cars slipped from about three-fourths in the mid-1950s to little more than a third by the mid-1970s. The market share for American manufacturers began a steady rise in the early 1980s, however, as the Big Three cut their overseas subsidiaries, improved the quality of design and manufacturing, and developed new styles of vehicles, such as the minivan and the sport utility vehicle (SUV), that built on their traditional strengths in the large-car market.
Federal legislation affecting the automobile industry proliferated from the New Deal era on. The National Labor Relations Act of 1935 encouraged the unionization of automobile workers, making the United Automobile Workers of America an institution within the automobile industry. The so-called Automobile Dealer's Day in Court Act (Public Law 1026) in 1956 attempted to correct long-standing complaints about the retail selling of automobiles. The Motor Vehicle Air Pollution Act of 1965 and the National Traffic and Motor Vehicle Safety Act of 1966 regulated automotive design, and the 1970 Clean Air Act set stringent antiemission standards, leading to the universal use of catalytic converters. In 1975 the Energy Policy and Conservation Act required automakers' product lines to meet a steadily rising average fuel economy, beginning with 18 mpg in 1978 and rising to 27.5 (later reduced to 26) by 1985. Progressive governmental regulation of the post–World War II automobile industry, however, was accompanied by the massive, indirect subsidization of the Interstate Highway Act of 1956, which committed the federal government to pay, from a Highway Trust Fund, 90 percent of the construction costs for 41,000 miles (later 42,500 miles) of mostly toll-free express highways.
American reliance upon the automobile remained remarkably constant through peace and war, depression and prosperity. Although motor vehicle registrations declined slightly during the Great Depression, causing factory sales to dwindle to a low of 1.3 million units in 1932, the number of miles traveled by motor vehicle actually increased. Full recovery from the Depression was coupled with conversion of the automobile industry to meet the needs of the war effort. Production for the civilian market ceased early in 1942, with tires and gasoline severely rationed during the war. The industry converted to the manufacture of military items, contributing immeasurably to the Allied victory. After the war, pent-up demand and general affluence insured banner sales for Detroit, lasting into the late 1950s, when widespread dissatisfaction with the outcome of the automobile revolution began to become apparent.
Increasingly, in the 1960s, the automobile came to be recognized as a major social problem. Critics focused on its contributions to environmental pollution, urban sprawl, the rising cost of living, and accidental deaths and injuries. Much of the earlier romance of motoring was lost to a generation of Americans, who, reared in an automobile culture, accepted the motorcar as a mundane part of the establishment. While the automobile industry provided one out of every six jobs in the United States, its hegemony had been severely undercut over the preceding decades by proliferation of the size, power, and importance of government, which provided one out of every five jobs by 1970. With increased international involvement on the part of the United States, the rise of a nuclear warfare state, and the exploration of outer space, new industries more closely associated with the military-industrial complex—especially aerospace—became, along with the federal government, more important forces for change than the mature automobile industry.
These considerations notwithstanding, the American automobile culture continued to flourish in the 1960s. Drive-in facilities, automobile races, hot rodders, antique automobile buffs, and recreational vehicle enthusiasts all made their mark. And factory sales (over 11.2 million in 1972), registrations (more than 117 million), and the percentage of American families owning cars (83 percent) all indicated the country's reliance upon, if not necessarily its love for, automobiles. Whatever their problems, automobiles remained powerful cultural symbols of individualism, personal freedom, and mobility, even if certain realities—the industry's resistance to changing consumer demands, increasingly limited transportation alternatives, and lengthening average commutes—exposed some of the cracks in the symbol's veneer.
This phenomenal post–World War II proliferation of the U.S. automobile culture came to an abrupt halt in 1973–1974 with the onset of a worldwide energy crisis. Domestic oil reserves in mid-1973 were reported to be only 52 billion barrels, about a ten-year supply. Experts projected that crude petroleum imports would increase from 27 percent in 1972 to over 50 percent by 1980 and that all known world reserves of petroleum would be exhausted within fifty to seventy years. An embargo by the Arab oil-producing nations resulted, by 1 January 1974, in a ban on Sunday gasoline sales, a national 55-mph speed limit, five-to ten-gallon maximum limitations on gasoline purchases, and significantly higher prices at the pump. Despite short-range easing of the fuel shortage with the lifting of the Arab embargo, the crisis exposed potential limits on the further expansion of mass personal automobility.
The American auto industry was ill-prepared for the marked shift in consumer preference from large cars to smaller, more fuel-efficient alternatives, and, for the first quarter of 1974, Detroit's sales slipped drastically. Large cars piled up on storage lots and in dealers' showrooms, and massive layoffs accompanied the shifting of assembly lines to the production of smaller models. As the share of small cars in the U.S. market more than doubled from 27 percent in 1978 to 61.5 percent by 1981, the market share of imports began a slow and steady rise from 17.7 percent in 1978 to a high of 27.9 percent in 1982, with foreign imports taking over 25 percent of the U.S. market for passenger vehicles through 1990.
By the mid-1980s, however, the American automotive industry had begun a remarkable comeback, although its successes grew from its traditional strengths—big cars and cheap energy—rather than from adapting to the new paradigm that appeared inevitable in the late 1970s. Chrysler, on the verge of bankruptcy in 1979, led the turnaround. After securing a controversial $1.2 billion in federally guaranteed loans, the company promptly shed its overseas operations, modernized its management, and improved the quality of its product under the leadership of its new chief executive, Lee Iacocca. Chrysler's fuel-efficient K-car won awards, but in the long run its more successful innovation was the minivan, which found a highly profitable market niche and opened the door for the development of even larger and more-profitable "sport utility vehicles" (SUVs) in the 1990s. Ford, too, converted its more than $1 billion losses in 1980 and 1981 to profits of $1.87 billion in 1983 and $2.91 billion in 1984 by slashing payrolls, closing plants, and increasing operating efficiencies. With the rise of the SUV and the onset of recessions in Asia and the European Common Market, the percentage of foreign imports in the U.S. market dropped from 25.8 percent in 1990 to 14.9 percent in 1995, its lowest percentage since the late 1960s. And the average weight of American automobiles, which, through the use of lighter-weight materials and smaller designs, had dropped from 3,800 pounds in 1975 to 2,700 pounds in 1985, began a slow but steady march upward.
Bibliography
Flink, James J. America Adopts the Automobile, 1895–1910. Cambridge, Mass.: MIT Press, 1970.
———. The Car Culture. Cambridge, Mass.: MIT Press, 1975.
Ingrassia, Paul J., and Joseph B. White. Comeback: The Fall and Rise of the American Automobile Industry. New York: Simon and Schuster, 1994.
McShane, Clay. Down the Asphalt Path: The Automobile and the American City. New York: Columbia University Press, 1994.
Rae, John Bell. The American Automobile: A Brief History. Chicago: University of Chicago Press, 1965.
———. The Road and the Car in American Life. Cambridge, Mass.: MIT Press, 1971.
Rothschild, Emma. Paradise Lost: The Decline of the Auto-Industrial Age. New York: Random House, 1973.
White, Lawrence J. The Automobile Industry Since 1945. Cambridge, Mass.: Harvard University Press, 1971.
—James J. Flink
self-propelled vehicle used for travel on land. The term is commonly applied to a four-wheeled vehicle designed to carry two to six passengers and a limited amount of cargo, as contrasted with a truck, which is designed primarily for the transportation of goods and is constructed with larger and heavier parts, or a bus (or omnibus or coach), which is a large public conveyance designed to carry a large number of passengers and sometimes additionally small amounts of cargo. For operation and technical features of automobiles, differential; fuel injection; ignition; internal-combustion engine; lubrication; muffler; odometer; shock absorber; speedometer; steering system; suspension; tachometer; tire; transmission.
Automobile Propulsion Systems
Reciprocating Internal-Combustion Engines
The modern automobile is usually driven by a water-cooled, piston-type internal-combustion engine, mounted in the front of the vehicle; its power may be transmitted either to the front wheels, to the rear wheels, or to all four wheels. Some automobiles use air-cooled engines, but these are generally less efficient than the liquid-cooled type. In some models the engine is carried just forward of the rear wheels; this arrangement, while wasteful of space, has the advantage of better weight distribution. Although passenger vehicles are usually gasoline fueled, diesel engines (which burn a heavier petroleum oil) are employed both for heavy vehicles, such as trucks and buses, and for a small number of family sedans. Both diesel and gasoline engines generally employ a four-stroke cycle.
The Wankel Engine
For some years, it was hoped that the Wankel engine, a rotary internal-combustion engine developed by Felix Wankel of Germany in 1954, might provide an alternative to the reciprocating internal-combustion engine because of its low exhaust emissions and feasibility for mass production. In this engine a three-sided rotor revolves within an epithrochoidal drum (combustion chamber) in which the free space contracts or expands as the rotor turns. Fuel is inhaled, compressed, and fired by the ignition system. The expanding gas turns the rotor and the spent gas is expelled. The Wankel engine has no valves, pistons, connecting rods, reciprocating parts, or crankshaft. It develops a high horsepower per cubic inch and per pound of engine weight, and it is essentially vibrationless, but its fuel consumption is higher than that of the conventional piston engine.
Alternative Fuels and Engines
Internal-combustion engines consume relatively high amounts of petroleum, and contribute heavily to air pollution; therefore, other types of fuels and nonconventional engines are being studied and developed. An alternative-fuel vehicle (AFV) is a dedicated flexible-fuel vehicle (one with a common fuel tank designed to run on varying blends of unleaded gasoline with either ethanol or methanol) or a dual-fuel vehicle (one designed to run on a combination of an alternative fuel and a conventional fuel) operating on at least one alternative fuel. An advanced-technology vehicle (ATV) combines a new engine, power train, and drive train system to significantly improve fuel economy. It is estimated that more than a half million alternative-fuel vehicles were in use in the United States in 2002; 50% of these operate on liquefied petroleum gas (LPG, or propane) and almost 25% use compressed natural gas (CNG).
The ideal alternative-fuel engine would burn fuel much more cleanly than conventional gasoline-powered internal-combustion engines and yet still be able to use the existing fuel infrastructure (i.e., gas stations). Compressed natural gas, propane, hydrogen, and alcohol-based substances (gasohol, ethanol, methanol, and other “neat” alcohols) all have their proponents. However, although these fuels burn somewhat cleaner than gasoline, the use of all of them involves trade-offs. For example, because they take up more space per mile driven, these alternatives require larger fuel capacities or shorter distances between refueling stops. In addition, conventional automobiles may require extensive modifications to use alternative fuels; for example, to use gasohol containing more than 17% ethanol, the spark plugs, engine timing, and seals of an automobile must be modified; since 1998, however, many U.S. automobiles have been manufactured with equipment that enables them to run on E85, a mixture of 85% ethanol and 15% gasoline. Grain-derived fuels, such as ethanol, are a popular concept because they do not deplete the world's oil reserves; in various locations, “biodiesel” test cars have run on fuel similar to sunflower-seed oil. Similarly, dual-fuel (gasoline-diesel and gasoline-propane) and water-fuel-emulsion cars are being tested.
Alternative propulsion systems are also being studied. Steam engines, which were once more common than gasoline engines, are being experimented with now because they give off fewer noxious emissions; they are, however, less efficient than internal-combustion engines. Battery-powered electric engines, previously used mainly for local delivery vehicles, can now be used in automobiles capable of highway speeds, but they are restricted to relatively short trips because of limitations on the storage batteries that power the motors.
Some engineers worry that widespread adoption of electric cars might actually generate more air pollution, because additional electric power plants would be needed to recharge their batteries. Therefore, design and research work has also intensified on solar batteries, but they are generally not yet powerful enough to power such vehicles. The most promising technology for electric engines is the fuel cell, but fuel cells currently are too expensive for practical applications.
Hybrid vehicles, or hybrid electric vehicles (HEVs), are powered by two or more energy sources, one of which is electricity, to produce a high-miles-per-gallon, low-emission drive. There are two types of HEVs, series and parallel. In a series hybrid, all of the vehicle power is provided from one source. For example, an electric motor drives the vehicle from the battery pack and the internal combustion engine powers a generator that charges the battery. In a parallel hybrid, power is delivered through both paths, both the electric motor and the internal combustion engine powering the vehicle. Thus, the electric motor may help power the vehicle while idling and during acceleration. The internal combustion engine takes over while cruising, powering the drive train and recharging the electric motor's battery. Some hybrids can operate in electric-only mode. Automobiles with gasoline-electric hybrid engines first appeared on the consumer market in 1999; unhampered by the AFV's limitations, sales of these vehicles increased steadily at the beginning of the 21st cent.
Automobiles and the Environment
Pollutants derived from automobile operation have begun to pose environmental problems of considerable magnitude. It has been calculated, for example, that 70% of the carbon monoxide, 45% of the nitrogen oxides, and 34% of the hydrocarbon pollution in the United States can be traced directly to automobile exhausts (see air pollution). In addition, rubber (which wears away from tires), motor oil, brake fluid, and other substances accumulate on roadways and are washed into streams, with effects nearly as serious as those of untreated sewage. A problem also exists in disposing of the automobiles themselves when they are no longer operable.
In an effort to improve the situation, the U.S. government has enacted regulations on the use of the constituents of automobile exhaust gas that are known to cause air pollution. These constituents fall roughly into three categories: hydrocarbons that pass through the engine unburned and escape from the crankcase; carbon monoxide, also a product of incomplete combustion; and nitrogen oxides, which are formed when nitrogen and oxygen are in contact at high temperatures. Besides their own toxic character, hydrocarbons and nitrogen oxides undergo reactions in the presence of sunlight to form noxious smog. Carbon monoxide and hydrocarbons are rather easily controlled by the use of high combustion temperatures, leaner fuel mixtures, and lower compression ratios in engines. Unfortunately, the conditions that produce minimum emission of hydrocarbons tend to raise emission of nitrogen oxides. To some extent this difficulty is solved by adding recycled exhaust gas to the fuel mixture, thus avoiding the oversupply of oxygen that favors formation of nitrogen oxides.
The introduction of catalytic converters in the exhaust system has provided a technique for safely burning off hydrocarbon and carbon-monoxide emissions. The fragility of the catalysts used in these systems required the elimination of lead compounds previously used in gasoline to prevent engine knock. California, which has the most stringent air-pollution laws in the United States, requires further special compounding of gasoline to control emissions, and several states have mandated that ethanol be mixed with gasoline; as with the elimination of lead, measures taken to control air pollution have a negative impact on fuel efficiency.
Automotive Safety
Fatalities due to automobile accidents have stimulated improvements in automotive safety design. The first innovation involves creating a heavy cage around the occupants of the automobile, while the front and rear of the car are constructed of lighter materials designed to absorb impact forces. The second safety system uses seat belts to hold occupants in place. This was largely ineffective until states in the United States began passing laws requiring seat belt use. The third system is the air bag; within a few hundredths of a second after a special sensor detects a collision, an air bag in the steering wheel or dashboard inflates to prevent direct human impact with the wheel, dashboard, or windshield (newer vehicles sometimes include side air bags, to protect occupants from side collisions). Other advances in vehicle safety include the keyless ignition, which makes it impossible for a driver to start a car while under the influence of alcohol (over half of all vehicle fatalities involve at least one driver who has used alcohol) and antilock braking systems, which prevent an automobile's wheels from locking during braking.
Development of the Automobile
The automobile has a long history. The French engineer Nicolas Joseph Cugnot built the first self-propelled vehicle (Paris, 1789), a heavy, three-wheeled, steam-driven carriage with a boiler that projected in front; its speed was c.3 mph (5 kph). In 1801 the British engineer Richard Trevithick also built a three-wheeled, steam-driven car; the engine drove the rear wheels. Development of the automobile was retarded for decades by over-regulation: speed was limited to 4 mph (6.4 kph) and until 1896 a person was required to walk in front of a self-propelled vehicle, carrying a red flag by day and a red lantern by night. The Stanley brothers of Massachusetts, the most well-known American manufacturers of steam-driven autos, produced their Stanley Steamers from 1897 until after World War I.
The development of the automobile was accelerated by the introduction of the internal-combustion engine. Probably the first vehicle of this type was the three-wheeled car built in 1885 by the engineer Karl Benz in Germany. Another German engineer, Gottlieb Daimler, built an improved internal-combustion engine c.1885. The Panhard car, introduced in France by the Daimler company in 1894, had many features of the modern car. In the United States, internal-combustion cars of the horseless buggy type were manufactured in the 1890s by Charles Duryea and J. Frank Duryea, Elwood Haynes, Henry Ford, Ransom E. Olds, and Alexander Winton. Many of the early engines had only one cylinder, with a chain-and-sprocket drive on wooden carriage wheels. The cars generally were open, accommodated two passengers, and were steered by a lever.
The free growth of the automobile industry in the early 20th cent. was threatened by the American inventor George Selden's patent, issued in 1895. Several early manufacturers licensed by Selden formed an association in 1903 and took over the patent in 1907. Henry Ford, the leader of a group of independent manufacturers who refused to acknowledge the patent, was engaged in litigation with Selden and the association from 1903 until 1911, when the U.S. Circuit Court of Appeals ruled that the patent, although valid, covered only the two-cycle engine; most cars, including Ford's, used a four-cycle engine. The mass production of automobiles that followed, and the later creation of highways linking cities to suburbs and region to region, transformed American landscape and society.
Bibliography
See D. L. Lewis and L. Goldstein, The Automobile and American Culture (1983); J. J. Flink, The Automobile Age (1988); B. Olsen and J. Cabadas, The American Auto Factory (2002); P. Wollen (ed.) and J. Kerr (ed.), Autopia: Cars and Culture (2003).
This entry contains information applicable to United States law only.
No invention has so transformed the landscape of the United States of America as the automobile, and no other country has so thoroughly adopted the automobile as its favored means of transportation. Automobiles are used both for pleasure and for commerce and are typically the most valuable type of personal property owned by U.S. citizens. Because autos are expensive to acquire and maintain, heavily taxed, favorite targets of thieves, a major cause of air and noise pollution, and capable of causing tremendous personal injuries and property damage, the body of law surrounding them is quite large. Automobile law covers the four general phases in the life cycle of an automobile: its manufacture, sale, operation, and disposal.
Brief History of the Automobile
The first automobile powered by an internal combustion engine was invented and designed in Germany during the 1880s. In 1903, Henry Ford founded the Ford Motor Company and started an era of U.S. leadership in auto production that would last for most of the twentieth century. In 1908, Ford introduced the highly popular Model T, which by 1913 was being manufactured through assembly line techniques. Innovations by Ford, General Motors, and other manufacturers near Detroit made that city the manufacturing center for the U.S. car industry. By the 1920s, General Motors had become the world's largest auto manufacturer, a distinction it still held in the mid-1990s. Over time, the auto industry in all countries became increasingly concentrated in the hands of a few companies, and by 1939, the Big Three — Ford, General Motors, and Chrys- ler Corporation — had 90 percent of the U.S. market.
In 1929, there were roughly 5 million autos in the United States. All those cars required an infrastructure of roads, and by the end of World War II, the federal government had begun aggressively to fund highway development. With the intention of improving the nation's ability to defend itself, Congress passed the Federal-Aid Highway Act of 1944 (58 Stat. 838). It authorized construction of a system of multiple-lane, limited-access freeways, officially called the National System of Interstate and Defense Highways, designed to connect 90 percent of all U.S. cities of fifty thousand or more people. In 1956, the Federal-Aid Highway Act (23 U.S.C.A. § 103 [West 1995]) established the Federal Highway Trust Fund, which still provides 90 percent of the financing for interstate highways. By 1990, the interstate highway system was 99.2 percent complete and had cost $125 billion.
During the 1970s, the U.S. auto industry began to lose ground to Japanese and European automakers, and U.S. citizens relied to an increasing degree on imported autos. Japan, for example, surpassed the United States in auto production in the 1970s. Oil shortages and embargoes during the 1970s caused the price of gasoline to rise and put a premium on smaller autos, most of which were produced by foreign companies. Foreign cars also earned a reputation for higher quality during this period. The share of foreign-made cars in the U.S. market rose from 7.6 percent in 1960 to 24.9 percent in 1984.
In the early 1980s, the U.S. auto companies were suffering greatly, and the U.S. government bailed out the nearly bankrupt Chrysler Corporation. The U.S. government also negotiated a quota system with Japan that called for limits on Japanese autos imported into the United States, thereby raising the prices of Japanese cars. By the 1990s, the U.S. auto companies had regained much of the ground lost to foreign companies. In the mid-1990s, however, international manufacturing agreements meant that few cars, U.S. or foreign, were made entirely in one country.
Manufacture
Throughout the twentieth century, automakers were required to conform to ever stricter standards regarding the manufacture of their vehicles. These rules were designed to improve the safety, fuel consumption, and emissions of the auto.
Safety Standards
As autos increased in number and became larger and faster, and people traveled more miles a year in them, the number of motor vehicle deaths and injuries rose. By 1965, fifty thousand people were being killed in motor vehicle accidents every year, making automobiles the leading cause of accidental death for all age groups and the overall leading cause of death for the population below age forty-four. Between 1945 and 1995, 2 million people died and about 200 million were injured in auto accidents — many more than were wounded and injured in all the wars in the nation's history combined.
Beginning in the 1960s, consumer and automobile safety advocates began to press for federal safety standards for the manufacture of automobiles that would reduce such harrowing statistics. The most famous of these advocates was Ralph Nader, who published a 1965 book on the deficiencies of auto safety, called Unsafe at Any Speed: The Designed-in Dangers of the American Automobile. From 1965 to 1995, more than fifty safety standards were imposed on vehicle manufacturers, regulating the construction of windshields, safety belts, head restraints, brakes, tires, lighting, door strength, roof strength, and bumper strength.
In 1966, Congress passed the National Traffic and Motor Vehicle Act (15 U.S.C.A. § 1381 note, 1391 et seq. [1995]), which established a new federal regulatory agency, the National Highway Safety Bureau, later renamed the National Highway Traffic Safety Administration (NHTSA). The NHTSA was given a mandate to establish and enforce rules that would force manufacturers to build vehicles that could better avoid and withstand accidents. It was also given the power to require manufacturers to recall and repair defects in their motor vehicles, and the authority to coordinate state programs aimed at improving driver behavior. Also in 1966, Congress passed the Highway Safety Act (23 U.S.C.A. §§ 105, 303 note, et seq. [1995]), which provided for federal guidance and funding to states for the creation of highway safety programs.
As a result of these new laws, nineteen federal safety regulations came into effect on January 1, 1968. The regulations specified accident avoidance standards governing such vehicle features as brakes, tires, windshields, lights, and transmission controls. They also mandated more costly crash-protection standards. These included occupant-protection requirements for seat belts, energy-absorbing steering wheels and bumpers, head restraints, padded instrument panels, and stronger side doors. These auto safety standards have significantly reduced traffic fatalities. Between 1968 and 1979, the annual motor vehicle death rate decreased 35.2 percent, from 5.4 to 3.5 deaths per 100 million vehicle miles.
The seat belt requirement is usually considered the most important and effective safety standard. According to one study, seat belts that attach across both the lap and the shoulder reduce the probability of serious injury in an accident by 64 percent and of fatalities by 32 percent for front-seat occupants. However, because people do not always use restraints that require their active participation, autos are now required to have passive restraint systems such as automatic seat belts and air bags. Air bags pop out instantly in a crash and form a cushion that prevents the occupants from hitting the windshield or dashboard. These devices can substantially reduce the motor vehicle death rate. Cars made after 1990 must have either automatic seat belts or air bags, for front-seat occupants.
However, many auto safety experts point out that regulations on the manufacture of automobiles can only go so far in reducing injuries. Studies indicate that only 13 percent of auto accidents result from mechanical failure, and of those that do, most are caused by poor maintenance, not inadequate design or construction. Other analysts maintain that safety regulations cause a phenomenon known as offsetting behavior. According to this theory, people will drive more dangerously because they know their risk of injury is lower, putting themselves, their passengers, and other drivers, passengers, and pedestrians at greater risk and thereby offsetting the gain in safety caused by stricter manufacturing standards.
The NHTSA may also authorize recalls of cars on the road that it deems a safety hazard. In a recall, the federal government mandates that a manufacturer must repair all the vehicles that it has made that have a specific problem. Between 1976 and 1980, the NHTSA authorized the recall of over 39 million vehicles. Recall is a controversial policy. One problem with it is that, typically, only 50 percent of auto owners respond to recall notices.
Emissions Standards
Emissions standards are intended to reduce the amount of pollution coming from a car's exhaust system. Autos are major contributors to air pollution. Some cities, such as Los Angeles, have notorious problems with smog, a situation that can cause serious health problems for those with respiratory problems such as asthma and bronchitis. Air pollution also damages plants, reduces crop yields, lowers visibility, and causes acid rain. In 1970, Congress passed the Clean Air Act Amendments (Pub. L. No. 91-604, 84 Stat. 1676-1713 [42 U.S.C.A. § 7403 et seq. (1995)]), which set an ambitious goal of eliminating, by 1975, 90 to 95 percent of the emissions of hydrocarbons, carbon monoxide, and oxides of nitrogen as measured in 1968 automobiles. Manufacturers did not meet the target date for achieving this goal, and the deadline was extended. Also, the new emissions standards caused problems because they reduced fuel economy and vehicle performance.
Congress modified emissions standards in the 1977 Clean Air Act Amendments (42 U.S.C.A. § 7401 et seq.) and in the Clean Air Act Amendments of 1990 (Pub. L. No. 101-549, 104 Stat. 2399 [42 U.S.C.A. § 7401 et seq. (1995)]). The modified standards, as defined and monitored by the Environmental Protection Agency (EPA), included new requirements for states with low air quality to implement inspection and maintenance programs for all cars. These inspections were designed to ensure that vehicle emissions systems were working properly. In 1992, the EPA implemented strict emissions testing requirements for eighteen states and thirty-three cities with excessive levels of carbon monoxide and ozone.
California has been a leader in the setting of air quality standards. In 1989, it announced new guidelines that called for the phasing out of gas-fueled cars in southern California by the year 2010.
Critics maintain that federal emissions regulations have been too costly and that regulators should focus on reducing the emissions of more significant polluters, such as power plants and factories.
Fuel Efficiency Standards
In the 1975 Energy Policy and Conservation Act (Pub. L. No. 94-163, 89 Stat. 871 [codified as amended in scattered sections of 12 U.S.C.A., 15 U.S.C.A., and 42 U.S.C.A.]), Congress created a set of corporate average fuel economy (CAFE) standards for new cars manufactured in the United States. The secretary of transportation was empowered with overseeing these standards. The standards mandated that each car manufacturer achieve an average fuel economy of 27.5 miles per gallon (mpg) for its entire fleet of cars by 1985. Manufacturers that did not achieve these standards were to be fined. In 1980, an additional sales tax at purchase was placed upon "gas guzzlers" (cars that fail to achieve certain levels of fuel economy). The more a car's gas mileage is below a set standard — which was 22.5 mpg in 1986 — the greater the tax. For example, a 1986 car that achieved less than 12.5 mpg was charged an additional sales tax of $3,850. Some members of Congress have lobbied for fuel efficiency standards as high as a 40 mpg fleet average for auto manufacturers.
The fleet-average fuel efficiency of cars nearly doubled between 1973 and 1984. However, detractors of fuel efficiency standards maintain that the increase in efficiency was not entirely due to federal standards. They argue that fuel efficiency would have risen without regulation, in response to higher gas prices and consumer demand for more efficient cars.
Import Quotas
Faced with increasingly stiff competition from Japan and Europe, U.S. car manufacturers in the early 1980s pressed the federal government to limit the number of foreign cars imported into the United States. The administration of President Ronald Reagan responded by negotiating quotas, or limits, on Japanese car imports from 1981 to 1985. The Japanese voluntarily continued quotas on their car exports through the late 1980s, and quotas on pickup trucks from Japan remained in effect through the mid-1990s.
Tort Law and Automobile Manufacturing
Courts have established that manufacturers may be held liable and sued for property damage and personal suffering caused by the products they have manufactured. Automobile manufacturers, like all manufacturers, are thus subject to product liability law. Anyone who suffers harm, injury, or property damage from an improperly made auto may sue for damages. Actions that involve a breach of the manufacturer's responsibility to provide a reasonably safe vehicle are called torts.
Courts have found that auto manufacturers have a duty to reasonably design their vehicle against foreseeable accidents. The most important legal concept in this area is "crashworthiness" — a manufacturer's responsibility to make the car reasonably safe in the event of a crash. The standard of crashworthiness makes it possible to hold manufacturers liable for a defect that causes or enhances injuries suffered in a crash, even if that defect did not cause the crash itself. Auto injuries are often the result of a "second collision," when the occupant's body strikes the interior of the car, or strikes an exterior object after being thrown from the vehicle. Second collisions can occur when the seat belt fails, for example. Other examples of failures in crashworthiness include instruments that protrude on a dashboard or a fuel tank that explodes after impact. The landmark case in this area of manufacturer liability was Larsen v. General Motors Corp., 391 F.2d 495 (8th Cir. 1968), in which an individual was compensated for injuries suffered when his head struck a steering wheel in an accident. In another significant case, Grimshaw v. Ford Motor Co., 119 Cal. App. Ct. 3d 757, 174 Cal. Rptr. 348 (1981), a California jury required Ford Motor Company to pay $125 million in punitive damages (later lowered to $3.5 million) to a teenager who was severely burned in a fire that resulted when his Ford Pinto was rear-ended and the fuel tank exploded.
Automakers may also be held liable for failure to warn of a product's dangerous tendencies. Manufacturers have, for example, been sued for failing to warn drivers that certain vehicles had a tendency to roll over under some conditions.
Sale, Lease, and Rental
When shopping for a car, consumers generally receive their first information through advertising. States regulate automobile ads in different ways. In some states, an ad must state the number of advertised vehicles available for sale, the price, the dealer, and the factory-installed options and warranty terms. Car buyers should beware of bait-and-switch advertising, in which a dealer advertises a specific car for sale without the intention of actually selling it. The ad lures the customer into the showroom so that she or he may be persuaded to buy a higher-priced, unadvertised vehicle. When buyers encounter this type of fraud, or any other type of consumer fraud, they should contact the consumer protection division of their state attorney general's office.
The Statute of Frauds of the Uniform Commercial Code (UCC) governs the sale of autos in every state except Louisiana. According to the UCC, an auto contract must be in writing in order to be considered valid in court. The purchaser and an agent of the seller — an authorized salesperson, supervisor, or manager— must sign the contract. Buyers should read all terms of the contract before signing. The contract should specify whether the car is new or used and include a description of the car, the car's vehicle identification number (VIN) (on the driver's side of the dashboard near the window), details of any trade-in, and the terms of financing, including the annual percentage rate.
In most states, the title for a new or used car passes to the buyer when the seller endorses the certificate of title. If the buyer does not maintain payments according to the finance agreement, the creditor can repossess the car as collateral for the loan. The debtor has the right to buy back the car (redeem the collateral), and can do so by paying the entire balance due plus repossession costs. Eventually, the creditor may sell the car to another party. If the profit from the sale does not satisfy the debt, the debtor is liable for the difference. If the profit from the sale is greater than the debt, the creditor must pay the difference to the debtor. In some states, the creditor is required by the UCC to notify the debtor of the time, place, and manner of any sale of the car.
All used-car dealers must attach a buyer's guide to the side window of any car they are selling. It must state whether the car comes with a warranty; outline the specific coverage of any warranty; recommend that an independent mechanic inspect the car; state that all promises should be put in writing; and provide a list of potential problems with the car. The buyer's guide becomes part of any contract with the seller. The seller must be truthful about the car and should provide the buyer with the car's complete service records and a signed, written statement of the odometer reading and its accuracy. If the car does not perform as promised, a breach of warranty may have occurred. If an individual pays more than $500 for a used car, he or she should have a written contract and a bill of sale. The latter is required in many states to register a car, and should include the date of sale; the year, make, and model of the car; the VIN; the odometer reading; the amount paid for the car and what form it took; the buyer's and seller's names, addresses, and phone numbers; and the seller's signature.
The sale of new automobiles is subject to what are popularly called lemon laws. Lemon is the slang term for a car that just does not work right; like a lemon, it leaves a bad taste in the mouth. Lemon laws, now in force in all states, entitle a car buyer to a replacement car or a refund if the purchased car cannot be satisfactorily repaired by the dealer. States vary in their requirements for determining whether a car is a lemon. Most define a lemon as a vehicle that has been taken in at least four times for the same repair or is out of service for a total of thirty days during the coverage period. The coverage period is usually one year from delivery or the duration of the written warranty, whichever is shorter. The owner must keep careful records of repairs and submit a written notice to the manufacturer stating the problems with the car and an intention to declare it unfit for use. Many states require that the buyer and the manufacturer or dealer submit to private arbitration, a system of negotiating differences out of court. Increasingly, states are passing lemon laws for used as well as new cars.
A popular method of purchasing the use of a car is leasing. Leasing is essentially long-term rental. For persons who drive few miles a year, like to change cars often, or use their cars for business, leasing is an attractive option. A lease contract may or may not include other expenses such as sales tax, license fee, and insurance. In a closed-end, or "walkaway," lease contract, the car is returned at the end of the contract period and the lessee is free to "walk away" regardless of the value of the car. In an open-end lease, the lessee gambles that the car will be worth a stated price at the end of the lease. If the car is worth more than that price, the lessee may owe nothing or may be refunded the difference; if the car is worth less, the lessee will pay some or all of the difference. Payments are usually higher under a closed-end lease than under an open-end lease. Open-end leases more commonly have a purchase option at the end of the lease term.
To lease or rent an auto, an individual must show a valid driver's license and, usually, a major credit card. A rental business may require that a customer have a good driving record and be of a certain age, sometimes twenty-five years or older. An auto rental, as opposed to a lease, may be as short as one day. A rental company may offer a collision damage waiver (CDW) option, which provides insurance coverage for damages to the rented car. The CDW option does not cover personal injuries or personal property damage.
Operation and Maintenance
The operation of an automobile on a public street or highway is a privilege that can be regulated by motor vehicle laws. The individual states derive authority to control traffic from their police power, but often they delegate this authority to a local police force. On the national level, Congress is empowered to regulate motor vehicles that are engaged in interstate commerce.
Automobile regulations are provided for the safety and protection of the public. The laws must be reasonable and should not impose an extraordinary burden on the owners or operators. Such laws also provide a means of identifying vehicles involved in an accident or a theft and of raising revenue for the state by fees imposed on the owner or operator.
Registration and Licensing
Every state requires the owner of a vehicle to possess two documents: a certificate of ownership, or title, and a certificate of registration. Through registration, the owner's name, the type of vehicle, the vehicle's license plate number, and the VIN are all registered with the state in a central government office. On payment of a fee, a certificate of registration and license plates are given to the owner as evidence of compliance with the law. The operator is required to display the license plates appropriately on the car — usually one on the front and one on the back of the vehicle — and have the certificate of registration and license in possession while driving and ready to display when in an accident or requested to do so by a police officer. If a driver moves to another state, she or he must register the vehicle in that state within a certain amount of time, either immediately or within twenty to thirty days.
A driver's license is also mandatory in every state. The age at which a state allows a person to drive varies, though it is usually at least sixteen to eighteen. Other qualifications for a driver's license include physical and mental fitness, comprehension of traffic regulations, and ability to operate a vehicle competently. Most states require a person to pass a written examination, an eye test, and a driving test before issuing a license. States generally allow an individual with a learner's permit or temporary license to operate a vehicle when accompanied by a licensed driver. This enables a person to develop the driving skills needed to qualify for a license. A license can be revoked or suspended when the motorist disregards the safety of people and property, when a physical or mental disability impairs driving ability, or if the motorist fails to accurately disclose information on the license application. When the state revokes a person's license, it permanently denies that person the right to drive; when it suspends a license, it temporarily denies the right to drive.
Traffic Laws
Dozens of laws are related to the operation of an automobile, a large number of which vary by state. Minor traffic offenses include parking and speeding violations. More serious traffic offenses are reckless driving, leaving the scene of an accident, and driving without a license. Most states require motorists to file reports with the proper authorities when they are involved in accidents.
Speed limits vary by state. In 1973, during the height of the energy crisis, Congress defined a national speed limit of 55 mph in order to reduce gasoline consumption; the 55 mph limit also had the unintended effect of lowering the traffic fatality rate. Since then, most states have returned to an upper limit of 65 mph. Two types of speed limits are imposed: fixed maximum and prima facie. Under fixed maximum limits, it is unlawful to exceed the stated limit anywhere and at any time. Under prima facie limits, it is possible for a driver to prove in certain cases that a speed in excess of the limit was not unsafe, and therefore not unlawful, given the condition of the highway, amount of traffic, and other circumstances.
All states require children riding in automobiles to be restrained using safety belts or safety seats. Most states require adults to wear belts as well, though some require belts only for adults in the front seat. Violation of such laws results in a fine. In 1984, New York became the first state to pass a law making seat belts mandatory for adults.
Driving under the Influence
Driving under the influence of alcohol or drugs is the major cause of traffic deaths in the United States. Drunk drivers kill an estimated twenty-five thousand people a year. States use different terms to describe driving under the influence of mind-altering chemicals, or what is popularly known as drunk driving. These include driving under the influence (DUI), operating under the influence (OUI), and driving while intoxicated (DWI). To arrest someone for drunk driving, the state must have proof that the person is under the influence of alcohol or drugs, and the person must be in actual physical control of a vehicle and impaired in the ability to operate it safely. Every state has "implied consent" laws that require those with a driver's license to submit to sobriety tests if a police officer suspects they are intoxicated. These tests may include a field sobriety test (a test at the scene, such as walking a straight line), or blood, breath, or urine tests, usually administered at a police station. Refusal to take a sobriety test can result in suspension of the driver's license. Most states have "per se" laws that prohibit persons from driving if they have a blood-alcohol reading above a certain level. Several states have lowered their per se blood-alcohol limits to 0.08 percent. Penalties vary by state but can be particularly severe for repeat offenders, often involving jail sentences and revocation of driving privileges.
"Dramshop" acts make those who sell liquor for consumption on their premises, such as bars and restaurants, liable for damages caused by an intoxicated patron's subsequent actions. In some states, individuals injured by a drunk driver have used such laws to sue bars and restaurants that served liquor to the driver. "Social host" statutes make hosts of parties who serve drugs or alcohol liable for any damages or injuries caused by guests who subsequently drive while under the influence.
Several national organizations have been formed to combat drunk driving. These include Mothers Against Drunk Driving (MADD) and Students Against Drunk Driving (SADD). The legal drinking age has been raised to twenty-one in every state, largely in an attempt to reduce drunk driving. Most states also make it illegal to transport an open alcoholic beverage container in a vehicle. Alcohol-related deaths as a proportion of all traffic deaths decreased from about 56 percent in 1982 to 47 percent in 1991.
Other Crimes
Criminals both target and use automobiles in a number of different types of crime. Cars have been a favorite object of theft ever since their invention. As early as 1919, the Dyer Act, or National Motor Vehicle Theft Act (18 U.S.C.A. § 2311 et seq.), imposed harsh sentences on those who transported stolen vehicles across state lines. Car theft remains a serious problem in many areas of the country and is a major contributor to high insurance premiums in many urban areas. In 1994, Congress passed the Motor Vehicle Theft Prevention Act (18 U.S.C.A. § 511 et seq.; 42 U.S.C.A. § 13701 note, § 14171 [West 1995]), which established a program whereby owners can register their cars with the government, provide information on where their vehicles are usually driven, and affix a decal or marker to the cars. Owners who register their cars in the program authorize the police to stop the cars and question the occupants when the vehicles are out of their normal areas of operation.
Autos are also frequently used to commit crimes. Drivers whose negligence causes accidents that result in the death of other human beings may be found guilty of manslaughter (the unlawful killing of another without malice aforethought, that is, without the intention of causing harm through an illegal act), including criminally negligent manslaughter, a crime punishable by imprisonment. Two types of crime that have received a great deal of public attention are drive-by shootings, in which occupants of a vehicle fire guns at pedestrians or at people in other cars, and car-jackings, in which criminals hijack, or take over, cars from their owners or operators, often robbing and sometimes killing the victims in the process. Because of the usually random nature of such crimes, the public has called for severe penalties for them. The Violent Crime Control and Law Enforcement Act of 1994 (Pub. L. No. 103-322, 108 Stat. 1796) made killings caused by drive-by shootings or car-jackings punishable by death.
Insurance
Most states require the owner to acquire auto insurance or deposit a bond before a vehicle can be properly registered. Insurance provides compensation for innocent people who suffer injuries resulting from the negligent operation of a vehicle. Other states have liability, or financial responsibility, statutes that require a motorist to pay for damages suffered in an accident resulting from his or her negligence and to furnish proof of financial capability to cover damages that he or she may cause in the future. These statutes do not necessarily require vehicle liability insurance.
About half of all states require that licensed drivers carry automobile insurance with liability, medical, and physical damage coverage. Liability insurance protects a vehicle owner against financial responsibility for damages caused by the negligence of the insured or other covered drivers. It consists of bodily injury, or personal liability, protection and property damage protection. Medical payments insurance covers the insured's household for medical and funeral expenses that result from an auto accident. Physical damage insurance consists of collision coverage, which pays for damage to a car resulting from collision, regardless of fault, and comprehensive coverage, which pays for damage from theft, fire, or vandalism. Over twenty states also require that drivers carry coverage to protect against uninsured motorists. Such coverage allows insured drivers to receive payments from their own insurer should they suffer injuries caused by an uninsured driver. Most insurance policies offer a choice of deductible, which is the portion of an insurance claim that the insured must pay. The higher the deductible, the lower the annual insurance premium or payment.
Many states have laws requiring no-fault automobile insurance. Under no-fault insurance, each person's own insurance company pays for injury or damage in an auto accident, up to a certain limit, irrespective of whose fault the accident is. Each person is entitled to payment for loss of wages or salary, not exceeding a certain percentage of the value of such loss or a fixed weekly amount.
No-fault statutes provide that every person who receives personal injury benefits gives up the right to sue for damages. However, a person who is licensed to drive in a state that requires no-fault insurance may sue someone who has caused an accident and who is licensed in another state that does not require no-fault insurance. In some states, a person who has not obtained no-fault auto insurance is personally liable to pay damages. Some states do not abolish liability arising from the ownership, maintenance, or operation of a motor vehicle in certain circumstances, such as those in which the harm was intentionally caused, the injured person has suffered death or serious injuries, or medical expenses exceed a certain limit.
States that do not have compulsory automobile insurance typically have financial responsibility acts. These laws are designed to ensure that negligent drivers who injure others will pay any resulting claims. They require a proof of financial responsibility from drivers involved in an accident. After reporting the accident to a state agency, drivers who do not have adequate insurance coverage must post a cash deposit or equivalent bond of up to $60,000, unless the other driver provides a written release from liability.
Disposal
The last stage in the life cycle of an automobile is its disposal and recycling. In the United States, between 10 and 12 million cars are disposed of each year. In most cases, the first stage of disposal is handled by a wrecking or salvage yard. Most states require the salvage yard to have the title to an auto before the vehicle can be destroyed, and to contact a state agency regarding its destruction. This helps to prevent the destruction of cars used in crimes. Salvage yards typically must be licensed with a state pollution control agency for hazardous waste disposal. Salvage yards remove parts and items of value that can be recycled from the vehicle, such as batteries and fluids. What is left of the automobile is then sold to a shredder, a business that breaks the car up into small parts and separates the metal from the nonmetal parts. Roughly 25 percent of the auto cannot be recycled and must be disposed of in a landfill. Auto residue to be disposed of in a landfill typically must be tested to see that it meets the standards for disposal of hazardous waste.
See: Alcohol; Automobile Searches; Collision; Consumer Protection; Environmental Law; Highway; Import Quotas; Seat Belts.
IN BRIEF: A car.
A tree never hits an automobile except in self-defense.
— Quoted from www.zaadz.com
- Car Pricing News Blog Research on current automobile pricing.
Add your blog to the Answers Directory.
Quotes:
"The car as we know it is on the way out. To a large extent, I deplore its passing, for as a basically old-fashioned machine, it enshrines a basically old-fashioned idea: freedom. In terms of pollution, noise and human life, the price of that freedom may be high, but perhaps the car, by the very muddle and confusion it causes, may be holding back the remorseless spread of the regimented, electronic society." - J. G. Ballard
"What our children have to fear is not the cars on the highways of tomorrow but our own pleasure in calculating the most elegant parameters of their deaths." - J. G. Ballard
"I think that cars today are almost the exact equivalent of the great Gothic cathedrals: I mean the supreme creation of an era, conceived with passion by unknown artists, and consumed in image if not in usage by a whole population which appropriates them as a purely magical object." - Roland Barthes
"Driving is a spectacular form of amnesia. Everything is to be discovered, everything to be obliterated." - Jean Baudrillard
"The improved American highway system isolated the American-in-transit. On his speedway he had no contact with the towns which he by-passed. If he stopped for food or gas, he was served no local fare or local fuel, but had one of Howard Johnson's nationally branded ice cream flavors, and so many gallons of Exxon. This vast ocean of superhighways was nearly as free of culture as the sea traversed by the Mayflower Pilgrims." - Daniel J. Boorstin
"A car can massage organs which no masseur can reach. It is the one remedy for the disorders of the great sympathetic nervous system." - Jean Cocteau
See more famous quotes about Automobiles
An automobile (from Greek auto, self and Latin mobile moving, a vehicle that moves itself rather than being moved by another vehicle or animal) or motor car (usually shortened to just car) is a wheeled passenger vehicle that carries its own motor. Most definitions of the term specify that automobiles are designed to run primarily on roads, to have seating for one to eight people, to typically have four wheels, and to be constructed principally for the transport of people rather than goods.[1] However, the term is far from precise because there are many types of vehicles that do similar tasks.
There were 590 million passenger cars worldwide (roughly one car for every eleven people) as of 2002.[2]
History


Karl Benz
Although Nicolas-Joseph Cugnot is often credited with building the first self-propelled mechanical vehicle or automobile in about 1769, this claim is disputed by some, who doubt Cugnot's three-wheeler ever ran, while others claim Ferdinand Verbiest, a member of a Jesuit mission in China, built the first steam powered car around 1672.[3][4] In either case François Isaac de Rivaz, a Swiss inventor, designed the first internal combustion engine which was fuelled by a mixture of hydrogen and oxygen and used it to develop the world's first vehicle to run on such an engine. The design was not very successful, as was the case with Samuel Brown, Samuel Morey, and Etienne Lenoir who each produced vehicles powered by clumsy internal combustion engines.[5]
In November 1881 French inventor Gustave Trouvé demonstrated a working three-wheeled automobile. This was at the International Exhibition of Electricity in Paris.[6]
An automobile powered by an Otto gasoline engine was built in Mannheim, Germany by Karl Benz in 1885 and granted a patent in January of the following year under the auspices of his major company, Benz & Cie. which was founded in 1883.
Although several other German engineers (including Gottlieb Daimler, Wilhelm Maybach, and Siegfried Marcus) were working on the problem at about the same time, Karl Benz is generally acknowledged as the inventor of the modern automobile.[5] In 1879 Benz was granted a patent for his first engine, designed in 1878. Many of his other inventions made the use of the internal combustion engine feasible for powering a vehicle and in 1896, Benz designed and patented the first internal combustion flat engine.
Approximately 25 Benz vehicles were built and sold before 1893, when his first four-wheeler was introduced. They were powered with four-stroke engines of his own design. Emile Roger of France, already producing Benz engines under license, now added the Benz automobile to his line of products. Because France was more open to the early automobiles, more were built and sold in France through Roger than Benz sold in Germany.
Daimler and Maybach founded Daimler Motoren Gesellschaft (Daimler Motor Company, DMG) in Cannstatt in 1890 and under the brand name, Daimler, sold their first automobile in 1892. By 1895 about 30 vehicles had been built by Daimler and Maybach, either at the Daimler works or in the Hotel Hermann, where they set up shop after falling out with their backers. Benz and Daimler seem to have been unaware of each other's early work and worked independently.
Daimler died in 1900 and later that year, Maybach designed a model named Daimler-Mercedes, special-ordered by Emil Jellinek. Two years later, a new model DMG automobile was produced and named Mercedes after the engine. Maybach quit DMG shortly thereafter and opened a business of his own. Rights to the Daimler brand name were sold to other manufacturers.
Karl Benz proposed co-operation between DMG and Benz & Cie. when economic conditions began to deteriorate in Germany following the First World War, but the directors of DMG refused to consider it initially. Negotiations between the two companies resumed several years later and in 1924 they signed an Agreement of Mutual Interest valid until the year 2000. Both enterprises standardized design, production, purchasing, sales, and advertising—marketing their automobile models jointly—although keeping their respective brands. On June 28, 1926, Benz & Cie. and DMG finally merged as the Daimler-Benz company, baptizing all of its automobiles Mercedes Benz honoring the most important model of the DMG automobiles, the Maybach design later referred to as the 1902 Mercedes-35hp, along with the Benz name. Karl Benz remained a member of the board of directors of Daimler-Benz until his death in 1929.
In 1890, Emile Levassor and Armand Peugeot of France began producing vehicles with Daimler engines, and so laid the foundation of the motor industry in France. The first American car with a gasoline internal combustion engine supposedly was designed in 1877 by George Selden of Rochester, New York, who applied for a patent on an automobile in 1879. In Britain there had been several attempts to build steam cars with varying degrees of success with Thomas Rickett even attempting a production run in 1860.[7] Santler from Malvern is recognized by the Veteran Car Club of Great Britain as having made the first petrol-powered car in the country in 1894[8] followed by Frederick William Lanchester in 1895 but these were both one-offs.[8] The first production vehicles came from the Daimler Motor Company, founded by Harry J. Lawson in 1896, and making their first cars in 1897.[8]
In 1892, German engineer Rudolf Diesel got a patent for a "New Rational Combustion Engine". In 1897 he built the first Diesel Engine.[5] In 1895, Selden was granted a United States patent(U.S. Patent ) for a two-stroke automobile engine, which hindered more than encouraged development of autos in the United States. Steam, electric, and gasoline powered autos competed for decades, with gasoline internal combustion engines achieving dominance in the 1910s.
Although various pistonless rotary engine designs have attempted to compete with the conventional piston and crankshaft design, only Mazda's version of the Wankel engine has had more than very limited success.

Production
The large-scale, production-line manufacturing of affordable automobiles was debuted by Ransom Olds at his Oldsmobile factory in 1902. This concept was then greatly expanded by Henry Ford, beginning in 1914.
As a result, Ford's cars came off the line in three minute intervals, much faster than previous methods, increasing production by seven to one (requiring 12.5 man-hours before, 1 hour 33 minutes after), while using less manpower.[9] It was so successful, paint became a bottleneck. Only Japan black would dry fast enough, forcing the company to drop the variety of colors available before 1914, until fast-drying Durco lacquer was developed in 1926.[10] In 1914, an assembly line worker could buy a Model T with four months' pay.[11]
Ford's complex safety procedures—especially assigning each worker to a specific location instead of allowing them to roam about—dramatically reduced the rate of injury. The combination of high wages and high efficiency is called "Fordism," and was copied by most major industries. The efficiency gains from the assembly line also coincided with the take off of the United States. The assembly line forced workers to work at a certain pace with very repetitive motions which led to more output per worker while other countries were using less productive methods.
Ford at one point considered suing other car companies because they used the assembly line in their production, but decided against, realizing it was essential to creation and expansion of the industry as a whole.
In the automotive industry, its success was dominating, and quickly spread worldwide. Ford France and Ford Britain in 1911, Ford Denmark 1923, Ford Germany 1925; in 1921, Citroen was the first native European manufactuer to adopt it. Soon, companies had to have assembly lines, or risk going broke; by 1930, 250 companies which did not had disappeared.[12]
Development of automotive technology was rapid, due in part to the hundreds of small manufacturers competing to gain the world's attention. Key developments included electric ignition and the electric self-starter (both by Charles Kettering, for the Cadillac Motor Company in 1910-1911), independent suspension, and four-wheel brakes.
Ford Model T, 1927, regarded as the first affordable automobile
Since the 1920s, nearly all cars have been mass-produced to meet market needs, so marketing plans have often heavily influenced automobile design. It was Alfred P. Sloan who established the idea of different makes of cars produced by one company, so buyers could "move up" as their fortunes improved.
Reflecting the rapid pace of change, makes shared parts with one another so larger production volume resulted in lower costs for each price range. For example, in the 1930s, LaSalles, sold by Cadillac, used cheaper mechanical parts made by Oldsmobile; in the 1950s, Chevrolet shared hood, doors, roof, and windows with Pontiac; by the 1990s, corporate drivetrains and shared platforms (with interchangeable brakes, suspension, and other parts) were common. Even so, only major makers could afford high costs, and even companies with decades of production, such as Apperson, Cole, Dorris, Haynes, or Premier, could not manage: of some two hundred carmakers in existence in 1920, only 43 survived in 1930, and with the Great Depression, by 1940, only 17 of those were left.[13]
In Europe, much the same would happen. Morris set up its production line at Cowley in 1924, and soon outsold Ford, while beginning in 1923 to follow Ford's practise of vertical integration, buying Hotchkiss (engines), Wrigley (gearboxes), and Osberton (radiators), for instance, as well as competitors, such as Wolseley: in 1925, Morris had 41% of total British car production. Most British small-car assemblers, from Autocrat to Meteorite to Seabrook, to name only three, had gone under.[14] Citroen did the same in France, coming to cars in 1919; between them and the cheap cars in reply, Renault's 10CV and Peugeot's 5CV, they produced 550000 cars in 1925, and Mors, Hurtu, and others could not compete.[15] Germany's first mass-manufactured car, the Opel 4PS Laubfrosch (Tree Frog), came off the line at Russelsheim in 1924, soon making Opel the top car builder in Germany, with 37.5% of the market.[16]
Design
The 1955 Citroën DS; revolutionary visual design and technological innovation.
The design of modern cars is typically handled by a large team of designers and engineers from many different disciplines. As part of the product development effort the team of designers will work closely with teams of design engineers responsible for all aspects of the vehicle. These engineering teams include: chassis, body and trim, powertrain, electrical and production. The design team under the leadership of the design director will typically comprise of an exterior designer, an interior designer (usually referred to as stylists), and a color and materials designer. A few other designers will be involved in detail design of both exterior and interior. For example, a designer might be tasked with designing the rear light clusters or the steering wheel. The color and materials designer will work closely with the exterior and interior designers in developing exterior color paints, interior colors, fabrics, leathers, carpet, wood trim, and so on.
In 1924 the American national automobile market began reaching saturation. To maintain unit sales, General Motors instituted annual model-year design changes (also credited to Alfred Sloan) in order to convince car owners they needed a replacement each year. Since 1935 automotive form has been driven more by consumer expectations than engineering improvement.
There have been many efforts to innovate automobile design funded by the NHTSA, including the work of the NavLab group at Carnegie Mellon University.[17] Recent efforts include the highly publicized DARPA Grand Challenge race.[18]
Acceleration, braking, and measures of turning or agility vary widely between different makes and models of automobile. The automotive publication industry has developed around these performance measures as a way to quantify and qualify the characteristics of a particular vehicle. See quarter mile and 0 to 60 mph.
Fuel and propulsion technologies
- See also: Alternative fuel vehicle
Most automobiles in use today are propelled by gasoline (also known as petrol) or diesel internal combustion engines, which are known to cause air pollution and are also blamed for contributing to climate change and global warming.[19] Increasing costs of oil-based fuels and tightening environmental law and restrictions on greenhouse gas emissions are propelling work on alternative power systems for automobiles. Efforts to improve or replace these technologies include hybrid vehicles, electric vehicles and hydrogen vehicles.
Diesel
Diesel engined cars have long been popular in Europe with the first models being introduced in the 1930s by Mercedes Benz and Citroen. The main benefit of Diesels are a 50% fuel burn efficiency compared with 27%[20] in the best gasoline engines. A down side of the diesel is the presence in the exhaust gases of fine soot particulates and manufacturers are now starting to fit filters to remove these. Many diesel powered cars can also run with little or no modifications on 100% biodiesel.
Gasoline
Gasoline engines have the advantage over diesel in being lighter and able to work at higher rotational speeds and they are the usual choice for fitting in high performance sports cars. Continuous development of gasoline engines for over a hundred years has produced improvements in efficiency and reduced pollution. The carburetor was used on nearly all road car engines until the 1980s but it was long realised better control of the fuel/air mixture could be achieved with fuel injection. Indirect fuel injection was first used in aircraft engines from 1909, in racing car engines from the 1930s, and road cars from the late 1950s.[20] Gasoline Direct Injection (GDI) is now starting to appear in production vehicles such as the 2007 BMW MINI. Exhaust gases are also cleaned up by fitting a catalytic converter into the exhaust system. Clean air legislation in many of the car industries most important markets has made both catalysts and fuel injection virtually universal fittings. Most modern gasoline engines are also capable of running with up to 15% ethanol mixed into the gasoline - older vehicles may have seals and hoses that can be harmed by ethanol. With a small amount of redesign, gasoline-powered vehicles can run on ethanol concentrations as high as 85%. 100% ethanol is used in some parts of the world (such as Brazil), but vehicles must be started on pure gasoline and switched over to ethanol once the engine is running. Most gasoline engined cars can also run on LPG with the addition of an LPG tank for fuel storage and carburetion modifications to add an LPG mixer. LPG produces fewer toxic emissions and is a popular fuel for fork lift trucks that have to operate inside buildings.
Ethanol
Ethanol and other alcohol fuels have widespread use a automotive fuel. Most alcohols have less energy per liter than gasoline and are usually bended with gasoline. Alcohols are used for a variety of reasons - to increase octane, to improve emissions and as an alternative to petroleum based fuel, since they can be made from agricultural crops. Brazil's ethanol program provides about 20% of the nations automotive fuel needs, including several million cars that operate on pure ethanol.
Electric


The Henney Kilowatt, the first modern (transistor-controlled) electric car.
The first electric cars were built around 1832 well before internal combustion powered cars appeared.[21] For a period of time electrics were considered superior due to the silent nature of electric motors compared to the very loud noise of the gasoline engine. This advantage was removed with Hiram Percy Maxim's invention of the muffler in 1897. Thereafter internal combustion powered cars had two critical advantages: 1) long range and 2) high specific energy (far lower weight of petrol fuel versus weight of batteries). The building of battery electric vehicles that could rival internal combustion models had to wait for the introduction of modern semiconductor controls and improved batteries. Because they can deliver a high torque at low revolutions electric cars do not require such a complex drive train and transmission as internal combustion powered cars. Some post-2000 electric car designs such as the Venturi Fétish are able to accelerate from 0-60 mph (96 km/h) in 4.0 seconds with a top speed around 130 mph (210 km/h). Others have a range of 250 miles (400 km) on the EPA highway cycle requiring 3-1/2 hours to completely charge[22]. Equivalent fuel efficiency to internal combustion is not well defined but some press reports give it at around 135 mpg(1.74 l/100 km).
Steam
Steam power, usually using an oil or gas heated boiler, was also in use until the 1930s but had the major disadvantage of being unable to power the car until boiler pressure was available. It has the advantage of being able to produce very low emissions as the combustion process can be carefully controlled. Its disadvantages include poor heat efficiency and extensive requirements for electric auxiliaries.[23]
Gas turbine
In the 1950s there was a brief interest in using gas turbine (jet) engines and several makers including Rover produced prototypes. In spite of the power units being very compact, high fuel consumption, severe delay in throttle response, and lack of engine braking meant no cars reached production.
Rotary (Wankel) engines
Rotary Wankel engines were introduced into road cars by NSU with the Ro 80 and later were seen in several Mazda models. In spite of their impressive smoothness, poor reliability and fuel economy led to them largely disappearing. Mazda, beginning with the RX-2, has continued research on these engines, overcoming most of the earlier problems with the RX-7 and RX-8.
Safety
Road traffic injuries represent about 25% of worldwide injury-related deaths (the leading cause) with an estimated 1.2 million deaths (2004) each year.[24]
Automobile accidents are almost as old as automobiles themselves. Early examples include Mary Ward, who became one of the first documented automobile fatalities in 1869 in Parsonstown, Ireland,[25] and Henry Bliss, one of the United State's first pedestrian automobile casualties in 1899 in New York.[26]
Cars have many basic safety problems - for example, they have human drivers who can make mistakes, wheels that can lose traction when braking, turning or acceleration forces are too high, and mechanical systems subject to failure. Collisions can have very serious or fatal consequences. Some vehicles have a high center of gravity and therefore an increased tendency to roll over.
Early safety research focused on increasing the reliability of brakes and reducing the flammability of fuel systems. For example, modern engine compartments are open at the bottom so that fuel vapors, which are heavier than air, vent to the open air. Brakes are hydraulic and dual circuit so that a total braking failure is very rare. Systematic research on crash safety started[citation needed] in 1958 at Ford Motor Company. Since then, most research has focused on absorbing external crash energy with crushable panels and reducing the motion of human bodies in the passenger compartment. This is reflected in most cars produced today.
Significant reductions in death and injury have come from the addition of Safety belts and laws in many countries to require vehicle occupants to wear them. Airbags and specialised child restraint systems have improved on that. Structural changes such as side-impact protection bars in the doors and side panels of the car mitigate the effect of impacts to the side of the vehicle. Many cars now include radar or sonar detectors mounted to the rear of the car to warn the driver if he or she is about to reverse into an obstacle or a pedestrian. Some vehicle manufacturers are producing cars with devices that also measure the proximity to obstacles and other vehicles in front of the car and are using these to apply the brakes when a collision is inevitable. There have also been limited efforts to use heads up displays and thermal imaging technologies similar to those used in military aircraft to provide the driver with a better view of the road at night.
There are standard tests for safety in new automobiles, like the EuroNCAP and the US NCAP tests.[27] There are also tests run by organizations such as IIHS and backed by the insurance industry.[28]
Despite technological advances, there is still significant loss of life from car accidents: About 40,000 people die every year in the United States, with similar figures in European nations. This figure increases annually in step with rising population and increasing travel if no measures are taken, but the rate per capita and per mile traveled decreases steadily. The death toll is expected to nearly double worldwide by 2020. A much higher number of accidents result in injury or permanent disability. The highest accident figures are reported in China and India. The European Union has a rigid program to cut the death toll in half by 2010, and member states have started implementing measures.
Automated control has been seriously proposed and successfully prototyped. Shoulder-belted passengers could tolerate a 32 g emergency stop (reducing the safe inter-vehicle gap 64-fold) if high-speed roads incorporated a steel rail for emergency braking. Both safety modifications of the roadway are thought to be too expensive by most funding authorities, although these modifications could dramatically increase the number of vehicles able to safely use a high-speed highway. This makes clear the often-ignored fact road design and traffic control also play a part in car wrecks; unclear traffic signs, inadequate signal light placing, and poor planning (curved bridge approaches which become icy in winter, for example), also contribute.
Economics and Impacts
The neutrality of this section is disputed. Please see the discussion on the talk page. |
The hydrogen powered FCHV (Fuel Cell Hybrid Vehicle) was developed by Toyota in 2005
Cost and benefits of ownership
The costs of automobile ownership, which may include the cost of: acquiring the vehicle, repairs, maintenance, fuel, depreciation, parking fees, tire replacement, taxes and insurance,[29] are weighed against the cost of the alternatives, and the value of the benefits - perceived and real - of vehicle ownership. The benefits may include personal freedom, mobility, independence and convenience.[30]
Cost and benefits to society
Similarly the costs to society of encompassing automobile use, which may include those of: maintaining roads, pollution, public health, health care, and of disposing of the vehicle at the end of its life, can be balanced against the value of the benefits to society that automobile use generates. The societal benefits may include: economy benefits, such as job and wealth creation, of automobile production and maintenance, transportation provision, society wellbeing derived from leisure and travel opportunities, and revenue generation from the tax opportunities. The ability for humans to move rapidly from place to place has far reaching implications for the nature of our society. People can now live far from their workplaces, the design of cities can be determined as much by the need to get vehicles into and out of the city as the nature of the buildings and public spaces within the city.[31]
Impacts on society and environment
- Further information: Global warming
Transportation is a major contributor to air pollution in most industrialised nations. According to the American Surface Transportation Policy Project nearly half of all Americans are breathing unhealthy air. Their study showed air quality in dozens of metropolitan areas has got worse over the last decade.[32] In the United States the average passenger car emits 11,450 lbs (5 tonnes) of carbon dioxide, along with smaller amounts of carbon monoxide, hydrocarbons, and nitrogen.[33] Residents of low-density, residential-only sprawling communities are also more likely to die in car collisions, which kill 1.2 million people worldwide each year, and injure about forty times this number.[34] Sprawl is more broadly a factor in inactivity and obesity, which in turn can lead to increased risk of a variety of diseases.[35]
Improving the positive and reducing the negative impacts
Fuel taxes may act as an incentive for the production of more efficient, hence less polluting, car designs (e.g. hybrid vehicles) and the development of alternative fuels. High fuel taxes may provide a strong incentive for consumers to purchase lighter, smaller, more fuel-efficient cars, or to not drive. On average, today's automobiles are about 75 percent recyclable, and using recycled steel helps reduce energy use and pollution.[36] In the United States Congress, federally mandated fuel efficiency standards have been debated regularly, passenger car standards have not risen above the 27.5 miles per gallon standard set in 1985. Light truck standards have changed more frequently, and were set at 22.2 miles per gallon in 2007.[37] Alternative fuel vehicles are another option that is less polluting than conventional petroleum powered vehicles.
Future car technologies
Automobile propulsion technologies under development include gasoline/electric and plug-in hybrids, battery electric vehicles, hydrogen cars, biofuels and various alternative fuels.
Research into future alternative forms of power include the development of fuel cells, Homogeneous Charge Compression Ignition (HCCI), stirling engines[38], and even using the stored energy of compressed air or liquid nitrogen.
New materials which may replace steel car bodies include duraluminum, fiberglass, carbon fiber, and carbon nanotubes.
Alternatives to the automobile
Established alternatives for some aspects of automobile use include public transit (buses, trolleybuses, trains, subways, monorails, tramways), cycling, walking, rollerblading and skateboarding. Car-share arrangements are also increasingly popular – the U.S. market leader has experienced double-digit growth in revenue and membership growth between 2006 and 2007, offering a service that enables urban residents to "share" a vehicle rather than own a car in already congested neighborhoods.[39] Bike-share systems have been tried in some European cities, including Copenhagen and Amsterdam. Similar programs have been experimented with in a number of U.S. Cities.[40] Additional individual modes of transport, such as personal rapid transit could serve as an alternative to automobiles if they prove to be socially accepted.[41]
Further reading
Car engine | |
---|---|
Air/Fuel | Air filter · Air fuel ratio meter · Automatic Performance Control · Blowoff valve · Boost · Boost controller · Butterfly valve · Carburetor · Charge cooler · Centrifugal type supercharger · Cold air intake · Engine management system · Engine Control Unit · Forced induction · Front mounted intercooler · Fuel filter · Fuel injection · Fuel pump · Fuel tank · Gasoline direct injection · Indirect injection · Intake · Intercooler · Manifold · Manifold vacuum · Mass flow sensor · Naturally-aspirated engine · Piston · Ram-air intake · Scroll-type supercharger · Short ram air intake · Supercharger · Throttle body · Top mounted intercooler · Turbocharger · Turbocharged Direct Injection · Twin-turbo · Variable Length Intake Manifold · Variable geometry turbocharger · Warm air intake |
Exhaust | Catalytic converter · Emissions control devices · Exhaust pipe · Exhaust system · Glasspack · Muffler · Oxygen sensor |
Cooling | Aircooling · Antifreeze · Ethylene glycol · Radiator · Thermostat |
Ignition system | Starter · Car battery · Contact breaker · Distributor · Electrical ballast · Ignition coil · Lead-acid battery · Magneto · Spark-ignition · Spark plug |
Other | Balance shaft · Block heater · Crank. Cam · Camshaft · Connecting rod · Combustion chamber · Crank pin · Crankshaft · Crossflow cylinder head · Crossplane · Desmodromic valve · Engine knocking · Compression ratio · Crank sensor · Cylinder · Cylinder bank · Cylinder block · Cylinder head · Cylinder head porting · Dump valve · Engine balance · Oil filter · Firing order · Freeze plug · Gasket · Head gasket · Hypereutectic piston · Hydrolock · Lean burn · Main bearing · Motor oil · Multi-valve · Oil sludge · Overhead camshaft · Overhead valve · PCV valve · Piston · Piston ring · Pneumatic valve gear · Poppet valve · Power band · Redline · Reverse-flow cylinder head · Rocker arm · Seal · Sleeve valve · Starter ring gear · Synthetic oil · Tappet · Timing belt · Timing mark · Top dead centre · Underdrive pulleys · Valve float · Variable valve timing |
Powertrain | |
---|---|
Wheels and Tires | All-terrain tire · Bias-ply tire · Contact patch · Custom wheel · Drive wheel · Hubcap · Magnesium alloy wheel · Mud-terrain tyre · Paddle tires · Radial tire · Rostyle wheel · Run flat tire · Schrader valve · Slick tire · Spinner · Tire code · Tire Pressure Monitoring System · Tread · Treadwear rating · Whitewall tire · Wire wheels |
Transmission | Automatic transmission · Clutch · Continuously variable transmission · Differential · Driveshaft · Electrorheological clutch · Epicyclic gearing · Fluid coupling · Fully-automatic transmission · Gear stick · Gearbox · Hydramatic · Limited slip differential · Locking differential · Manual transmission · Roto Hydramatic · Saxomat · Semi-automatic transmission · Semi-automatic transmission · Super Turbine 300 · Tiptronic Torque converter · Transmission (mechanics) · Transmission Control Unit · Turbo-Hydramatic · Universal joint |
Steering | Ackermann steering geometry · Anti-lock braking system · Camber angle · Car handling · Caster angle · Oversteer · Power steering · Rack and pinion · Toe angle · Torque steering · Understeer |
Suspension | Axle · Beam axle · Coil spring · De Dion tube · Double wishbone · Electronic Stability Control · Hydragas · Hydrolastic · Hydropneumatic suspension · Independent suspension · Kingpin · Leaf spring · Live axle · MacPherson strut · Multi-link suspension · Panhard rod · Semi-trailing arm suspension · Shock absorber · Sway bar · Swing axle · Torsion beam suspension · Transaxle · Trailing arm · Unsprung weight · Watt's linkage · Wishbone suspension |
Brakes | Anti-lock braking system · Disc brake · Drum brake · Hand brake · Hydraulic brake · Inboard brake · Brake lining · Brake fade · Brake fluid · Hydraulic fluid · Brake bleeding · Engine braking · Electronic brakeforce distribution · Regenerative brake |
Other automotive topics
- Car bomb
- Car donation
- Driving
- Society of Automotive Engineers
- Sustainable transport
- U.S. Automobile Production Figures - production figures for each make from 1899 to present
- V2G
- V2V
References
- ^ (1976) Pocket Oxford Dictionary. London: Oxford University Press. ISBN 0-19-861113-7.
- ^ WorldMapper - passenger cars.
- ^ SA MOTORING HISTORY - TIME LINE. Government of South Australia.
- ^ Setright, L. J. K. (2004). Drive On!: A Social History of the Motor Car. Granta Books. ISBN 1-86207-698-7.
- ^ a b c Ralph Stein (1967). The Automobile Book. Paul Hamlyn Ltd.
- ^ Wakefield, Ernest H. (1994). History of the Electric Automobile. Society of Automotive Engineers, Inc., 2-3. ISBN 1-56091-299-5.
- ^ Burgess Wise, D. (1970). Veteran and Vintage Cars. London: Hamlyn. ISBN 0-600-00283-7.
- ^ a b c Georgano, N. (2000). Beaulieu Encyclopedia of the Automobile. London: HMSO. ISBN 1-57958-293-1.
- ^ Georgano.
- ^ Georgano. This is the source of Ford's apocryphal remark, "any color as long as it's black".
- ^ Georgano.
- ^ Georgano.
- ^ Georgano.
- ^ Georgano.
- ^ Georgano.
- ^ Georgano.
- ^ Past projects, NavLab.
- ^ DARPA Urban Challenge.
- ^ Global Climate Change. U.S. Department of Energy. Retrieved on 2007-03-03.
- ^ a b Norbye, Jan (1988). Automotive fuel injection Systems. Haynes Publishing. ISBN 0-85429-755-3.
- ^ Bellis, M. (2006) "The History of Electric Vehicles: The Early Years" About.com article at inventors.about.com accessed on 5 September 2007
- ^ Mitchell, T. (2003) "AC Propulsion Debuts tzero with LiIon Battery" AC Propulsion, Inc. press release at acpropulsion.com accessed 5 September 2007
- ^ Setright, L.J.K. "Steam: The Romantic Illusion", in Ward, Ian, ed., World of Automobiles (London: Orbis Publishing, 1974), pp.2168-2173.)
- ^ World report on road traffic injury prevention.
- ^ www.universityscience.ie/pages/scientists/sci_mary_ward.php. Retrieved on 2007-04-10.
- ^ CityStreets - Bliss plaque.
- ^ SaferCar.gov - NHTSA.
- ^ Insurance Institute for Highway Safety.
- ^ car operating costs. my car. RACV. Retrieved on 2006-12-01.
- ^ Setright, L. J. K. (2004). Drive On!: A Social History of the Motor Car. Granta Books. ISBN 1-86207-698-7.
- ^ John A. Jakle, Keith A. Sculle. (2004). Lots of Parking: Land Use in a Car Culture. ISBN 0813922666.
- ^ Clearing the Air. The Surface Transportation Policy Project (2003-08-19). Retrieved on [[2007-04-26]].
- ^ Emission Facts. United States Environmental Protection Agency.
- ^ World report on road traffic injury prevention. World Health Organization.
- ^ Our Ailing Communities. Metropolis Magazine.
- ^ Automobiles and the Environment. Greenercars.com.
- ^ CAFE Overview - Frequently Asked Questions. National Highway Traffic Safety Administration.
- ^ Paul Werbos. www.werbos.com/E/WhoKilledElecPJW.htm. Retrieved on 2007-04-10.
- ^ Flexcar Expands to Philadelphia. Green Car Congress (2007-04-02).
- ^ About Bike Share Programs. Tech Bikes MIT.
- ^ Jane Holtz Kay (1998). Asphalt Nation: how the automobile took over America, and how we can take it back. ISBN 0520216202.
External links
This entry is from Wikipedia, the leading user-contributed encyclopedia. It may not have been reviewed by professional editors (see full disclaimer)
Best of the Web: automobile
Some good "automobile" pages on the web:
Join the WikiAnswers Q&A; community. Post a question or answer questions about "automobile" at WikiAnswers.
Copyrights:
![]() |
![]() | Dictionary. The American Heritage® Dictionary of the English Language, Fourth Edition Copyright © 2007, 2000 by Houghton Mifflin Company. Updated in 2007. Published by Houghton Mifflin Company. All rights reserved. Read more |
![]() |
![]() | How Products are Made. How Products are Made. Copyright © 2002 by The Gale Group, Inc. All rights reserved. Read more |
![]() |
![]() | Sci-Tech Encyclopedia. McGraw-Hill Encyclopedia of Science and Technology. Copyright © 2005 by The McGraw-Hill Companies, Inc. All rights reserved. Read more |
![]() |
![]() | Britannica Concise Encyclopedia. Britannica Concise Encyclopedia. © 2006 Encyclopædia Britannica, Inc. All rights reserved. Read more |
![]() |
![]() | English Folklore. A Dictionary of English Folklore. Copyright © 2000, 2003 by Oxford University Press. All rights reserved. Read more |
![]() |
![]() | US History Encyclopedia. © 2006 through a partnership of Answers Corporation. All rights reserved. Read more |
![]() |
![]() | Columbia Encyclopedia. The Columbia Electronic Encyclopedia, Sixth Edition Copyright © 2003, Columbia University Press. Licensed from Columbia University Press. All rights reserved. www.cc.columbia.edu/cu/cup/ Read more |
![]() |
![]() | Law Encyclopedia. West's Encyclopedia of American Law. Copyright © 1998 by The Gale Group, Inc. All rights reserved. Read more |
![]() |
![]() | Word Tutor. Copyright © 2004-present by eSpindle Learning, a 501(c) nonprofit organization. All rights reserved. eSpindle provides personalized spelling and vocabulary tutoring online; free trial. Read more |
![]() |
![]() | Blogs. © 1999-2008 by Answers Corporation. All rights reserved. Read more |
![]() |
![]() | Quotes About. Copyright © 2005 QuotationsBook.com. All rights reserved. Read more |
![]() |
![]() | Wikipedia. This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Automobile". Read more |