web.archive.org

Bernoulli distribution: Information from Answers.com

Results for Bernoulli distribution

Note: click on a word meaning below to see its connections and related words.

The noun has one meaning:

Meaning #1: a theoretical distribution of the number of successes in a finite set of independent trials with a constant probability of success
  Synonym: binomial distribution


Wikipedia: Bernoulli distribution

Bernoulli
Probability mass function
Cumulative distribution function
Parameters p>0\, (real)
Support k=\{0,1\}\,
Probability mass function (pmf) \begin{matrix}     q & \mbox{for }k=0 \\p~~ & \mbox{for }k=1     \end{matrix}
Cumulative distribution function (cdf) \begin{matrix}     0 & \mbox{for }k<0 \\q & \mbox{for }0\leq k<1\\1 & \mbox{for }k\geq 1     \end{matrix}
Mean p\,
Median N/A
Mode \begin{matrix} 0 & \mbox{if } q > p\\ 0, 1 & \mbox{if } q=p\\ 1 & \mbox{if } q < p \end{matrix}
Variance pq\,
Skewness \frac{q-p}{\sqrt{pq}}
Excess kurtosis \frac{6p^2-6p+1}{p(1-p)}
Entropy -q\ln(q)-p\ln(p)\,
Moment-generating function (mgf) q+pe^t\,
Characteristic function q+pe^{it}\,

In probability theory and statistics, the Bernoulli distribution, named after Swiss scientist Jakob Bernoulli, is a discrete probability distribution, which takes value 1 with success probability p and value 0 with failure probability q = 1 - p. So if X is a random variable with this distribution, we have:

\Pr(X=1) = 1 - \Pr(X=0) = 1 - q = p.\!

The probability mass function f of this distribution is

f(k;p) = \left\{\begin{matrix} p & \mbox {if }k=1, \\ 1-p & \mbox {if }k=0, \\ 0 & \mbox {otherwise.}\end{matrix}\right.

The expected value of a Bernoulli random variable X is E\left(X\right)=p, and its variance is

\textrm{var}\left(X\right)=p\left(1-p\right).\,

The kurtosis goes to infinity for high and low values of p, but for p = 1 / 2 the Bernoulli distribution has a lower kurtosis than any other probability distribution, namely -2.

The Bernoulli distribution is a member of the exponential family.

Related distributions

See also

Image:Bvn-small.png Probability distributions []
Univariate Multivariate
Discrete: BenfordBernoullibinomialBoltzmanncategoricalcompound Poissondiscrete phase-typedegenerateGauss-Kuzmingeometrichypergeometriclogarithmicnegative binomialparabolic fractalPoissonRademacherSkellamuniformYule-SimonzetaZipfZipf-Mandelbrot Ewensmultinomialmultivariate Polya
Continuous: BetaBeta primeCauchychi-squareDirac delta functionCoxianErlangexponentialexponential powerFfadingFermi-DiracFisher's zFisher-TippettGammageneralized extreme valuegeneralized hyperbolicgeneralized inverse GaussianHalf-logisticHotelling's T-squarehyperbolic secanthyper-exponentialhypoexponentialinverse chi-square (scaled inverse chi-square) • inverse Gaussianinverse gamma (scaled inverse gamma) • KumaraswamyLandauLaplaceLévyLévy skew alpha-stablelogisticlog-normalMaxwell-BoltzmannMaxwell speedNakagaminormal (Gaussian)normal-gammanormal inverse GaussianParetoPearsonphase-typepolarraised cosineRayleighrelativistic Breit-WignerRiceshifted GompertzStudent's ttriangulartruncated normaltype-1 Gumbeltype-2 GumbeluniformVariance-GammaVoigtvon MisesWeibullWigner semicircleWilks' lambda DirichletGeneralized Dirichlet distribution . inverse-WishartKentmatrix normalmultivariate normalmultivariate Studentvon Mises-FisherWigner quasiWishart
Miscellaneous: bimodalCantorconditionalequilibriumexponential familyInfinite divisibility (probability)location-scale familymarginalmaximum entropyposteriorpriorquasisamplingsingular
Statistics
Descriptive statistics Mean (Arithmetic, Geometric) - Median - Mode - Power - Variance - Standard deviation
Inferential statistics Hypothesis testing - Significance - Null hypothesis/Alternate hypothesis - Error - Z-test - Student's t-test - Maximum likelihood - Standard score/Z score - P-value - Analysis of variance
Survival analysis Survival function - Kaplan-Meier - Logrank test - Failure rate - Proportional hazards models
Probability distributions Normal (bell curve) - Poisson - Bernoulli
Correlation Confounding variable - Pearson product-moment correlation coefficient - Rank correlation (Spearman's rank correlation coefficient, Kendall tau rank correlation coefficient)
Regression analysis Linear regression - Nonlinear regression - Logistic regression


nov:Distributione de Bernoulli

This entry is from Wikipedia, the leading user-contributed encyclopedia. It may not have been reviewed by professional editors (see full disclaimer)

Best of the Web: Bernoulli distribution

Some good "Bernoulli distribution" pages on the web:


Math
mathworld.wolfram.com
 

Join the WikiAnswers Q&A; community. Post a question or answer questions about "Bernoulli distribution" at WikiAnswers.

Search for answers directly from your browser with the FREE Answers.com Toolbar!  
Click here to download now. 

Get Answers your way! Check out all our free tools and products.