pollution: Definition, Synonyms from Answers.com
- ️Wed Aug 02 2006
The term "pollution," which carries with it a sense of an impurity, can be defined as a chemical or physical agent in an inappropriate location or concentration. The sources of pollution are varied. Natural sources include those that are not directly under human control, such as volcanoes, which spew forth sulfur oxides and particles; and those people could avoid, such as groundwater with naturally high levels of arsenic, which has caused poisoning in Bangladesh and Taiwan. All human activities have the possibility of polluting the environment by contaminating air, water, food, or soil, The earliest human pollution-control efforts dealt with avoidance of diseases caused by contamination of water and food by human excreta and with the control of smoke from fires used for cooking and heating. Sanitary engineering to manage human wastes remains a central public health need. Indoor air pollution due to the use of wood and fossil fuels in poorly ventilated residences also remains a major source of exposure to pollutants and a cause of respiratory disease in much of the world.
Types of Pollution
Pollution production can be considered under the heading of the four major human activity sectors: industry, energy, transportation, and agriculture. With the marked increase in human population and the industrialization of much of the globe has come a whole new set of pollutants. Scientific advances based upon understanding the chemical and physical forces underlying nature have led to new processes and new products that have transformed society and have had a major positive impact on human health. But these industrial activities also result in air and water emissions and contamination of the soil and of food as by-products of the processes involved in manufacture. The products themselves may be the means by which pollutants are distributed to the general population, such as lead poisoning through the use of lead in house paints. In the United States and other more wealthy countries, there recently has been a marked decline in industrial pollution emissions per unit produced. This has come about through regulatory control of emissions and, in part, through the recognition by industry that emissions represent a loss of raw materials or product that is economically advantageous to retain. As developed countries move into the information era, much of the production of textiles and durable goods has shifted to developing countries, not always with the same level of pollution control or protection of the work force. In developing countries, industrial production often occurs in smaller units, such as backyard smelters, which have significant local effects and are more difficult to control.
The energy sector continues to grow rapidly worldwide. There are basically three types of energy sources: the burning of fossil fuels and biomass; nuclear power; and energy derived from natural processes such as the sun, wind, and the flow of water. Energy from fossil fuels results from the conversion of carbon to carbon dioxide, with the least efficient and most polluting fossil fuels reflecting the extent of components other than carbon and hydrogen in the fuel source. The most plentiful fossil fuel is coal, which is also among the most polluting. Coal contains mineral ashes, nitrogen, and sulfur, which produce particulates, nitrogen oxides and sulfur oxides, when coal is burned. The use of high-sulfur coal for electric power generation and for home heating was a dominant cause of major air pollution episodes in London in 1952, Donora, Pennsylvania, in 1948, and the Meuse Valley in Belgium in 1930. Much of the U.S. electric grid is powered by low-sulfur oil. Natural gas, which is a relatively pure hydrocarbon, is increasing in use and is particularly effective as a source of peak electric power during periods of high demand. The combustion of all fossil fuels produces nitrogen oxides, which are a major precursor of ozone and particulates. One form of nitrogen oxide, nitrogen dioxide, is itself a pollutant of concern. Carbon dioxide, the end product of efficient fossil fuel energy production, is a major contributor to global climate change. Reduction in carbon dioxide emissions requires more efficient production, transmission, and use of fossil fuel-derived energy. A switch to other energy sources will also help to reduce emissions.
Nuclear power has the advantage of not producing carbon dioxide or any of the sulfur oxides, nitrogen oxides, or particulates that are associated with fossil fuels. Its major disadvantages are the release of low-level radiation, the need for major water resources for cooling (with attendant ecological challenges), and, most importantly, the small but not absent risk of an uncontrolled nuclear reaction. The worst such example, and the only one in which there were substantial short-term health impacts from the civilian use of nuclear power, occurred in Chernobyl in the former Soviet Union in 1986. The extent of long-term effects due to the radiation that spread widely over Europe and globally is still being evaluated.
Wind and solar energy are expected to increase in use as the costs of fossil fuels increase and as new technology is developed. These are, in essence, free of pollution emissions. Hydroelectric power is a mainstay in some parts of the world, but dams have significant ecological implications and there is a growing movement against them. The most effective means of decreasing energy use is by lessening demand.
The transportation sector worldwide is increasingly dominated by automobile and truck emissions. In the United States there has been a marked decrease in pollutant emissions per mile driven that has been almost counterbalanced by an increase in the number of miles driven. Pollutants from gasoline-powered automobiles include the evaporation of volatile organic compounds and tailpipe emissions such as carbon monoxide, nitrogen oxides, benzene, and polycyclic aromatic hydrocarbons (PAHs). Increased engine efficiency and catalytic converters have been effective in decreasing all but nitrogen oxide emissions. Diesel engines, which in the United States are primarily used on trucks, emit high levels of particulates and PAHs. Two-cycle engines on mopeds and other smaller vehicles are relatively inefficient, with much of the fuel evaporating. This is particularly a problem in developing countries. All internal combustion engines lead to the production of carbon dioxide. Future growth in the use of personal automobiles will be a major threat to global carbon dioxide production unless new engines and power sources are developed. Control of automotive emissions is as much a function of effective planning of transportation systems, including mass transit, as it is of technology. There have been relatively few studies of airport-related pollutant emissions, a segment of transportation that is increasing rapidly.
Agriculture is also a major source of pollution. World population growth has been accompanied by increased crop yields, which have been made possible by heavy use of fertilizers and pesticides. Nitrogenous fertilizers, an important part of the increased yield, result in nitrite contamination of drinking water, to which infants are particularly vulnerable. Nitrogenous fertilizers contribute to oxygen problems in water bodies and to greenhouse gas emissions. Phosphate fertilizers are of concern because of trace amounts of cadmium and other heavy metals that sometimes are part of natural phosphates. Cadmium can be taken up into certain crops, can cause renal toxicity, and is a potential carcinogen.
There are a wide range of pesticides and herbicides that are central to modern agriculture. Each of these is chosen because of its ability to have a biological effect on a plant or insect, and there is always a possibility that the biological effect will extend to humans or to other species. Major problems have been caused by pesticides that persist in the environment, such as heptachlor. This has led to bans on persistent organic pollutants and to testing protocols to avoid developing new ones.
Other Pollution Categories
Categorizing pollution in terms of the four sectors of industry, energy, transportation, and agriculture obscures the fact that some of the most important sources of pollution are intersectorial. As just one example, the Aswan High Dam provides Egypt with an important hydroelectric source and is effective in controlling flooding and providing irrigation for agriculture. But by retaining silt it decreases the nutrient load to the Nile Delta, which leads to a much heavier requirement for chemical fertilizers for agriculture as well as loss of sardine and salmon fisheries. The lack of the flushing effect of Nile floods has led to increased salinization of the land and has optimized breeding conditions for snails that carry schistosomiasis, an ancient scourge of this area. Similarly, the use of wood for local energy in developing countries is more than just a potential source of indoor and outdoor air pollution. Loss of forests can lead to soil erosion, flooding, and desertification, and have a negative impact on global climate.
Activities that lead to human development within and across each of these major sectors have the potential for producing a pollution impact that outweighs any benefit. There is, unfortunately, one common human activity that has an enormous environmental impact with no redeeming developmental consequences: war.
Pollutants can also be characterized by chemical or physical class; by use; by industrial source; by whether they are likely to be present in air, water, food, or other media; by the organs they attack or the effects they have; by the laws that control their use; and by whether they present a local, regional, or global problem. All of these categorization schemes are valuable, but none are without its faults. Chemicals have multiple properties and uses, and are able to move across environmental boundaries. Pollution episodes have often come about through an inappropriate focus on only one aspect of a chemical. For example, the 1990 U.S. Clean Air Act required the use of oxygenated fuels, which have chemical characteristics that were thought to be beneficial in decreasing automotive emissions in polluted areas. Yet another chemical characteristics of the most commonly used oxygenate compound, methyl tertiary-butyl ether (MTBE), caused it to be a major groundwater contaminant, a problem that was not foreseen because of an inappropriately narrow focus.
A more holistic approach to environmental pollution is particularly important during the current transition period. Pollution control techniques have been largely successful in dealing with end-of-pipe emissions. Through regulatory command and control of major pollution sources there has been a steady diminution of measured emissions to air and water in developed countries, and an improvement in air and water quality. Yet major problems remain, and in some instances they are getting worse. Two interrelated categories of particular concern are global climate change and pollutants from nonpoint sources.
Our planet maintains itself through a series of feedback loops involving interconnected biological, geological, and physical processes. The science that has enhanced our understanding of these processes has also demonstrated their vulnerability to the increasing dominance of human activities, including the effect of pollutants. One example is the diminution of the stratospheric ozone layer that protects humans against the harmful effects of short-range ultraviolet light. A major source of this diminution is chlorofluorocarbons (CFCs). These compounds were seemingly ideal for refrigeration and a variety of other industrial purposes, in part because they are inert and cause little or no direct biological effects. But this lack of reactivity allows CFCs to persist and rise into the stratosphere where they enter into a reaction that decomposes ozone. An international treaty, the Montreal Protocol, has led to a decrease in this particular threat to the ozone layer. The feedback loops involved in global climate change, including the greenhouse effect which is now warming the earth, are far more complex and less well understood. Further, competitive economic and nationalistic interests have made it more difficult to deal with carbon dioxide and nitrogenous greenhouse gases.
Nonpoint source emissions refer to pollution for which there is no readily obvious target, or source. An example is damage to the Chesapeake Bay due to runoff of nitrogenous fertilizer compounds from farms along the Susquehanna River, including a heavy contribution from farms using natural fertilizing techniques. Agricultural practices and energy and transportation decisions contribute heavily to regional air and water pollution and to global warming.
Understanding Pollution Effects
A transition is also occurring in our understanding of the health effects of pollutants. It is now recognized that there are subtle health effects of environmental pollutants, such as endocrine disruption and neurobehavioral changes, for which newer toxicological paradigms are being developed. The unraveling of the human genome may provide a better understanding of the role of genetic susceptibility factors in response to pollution.
Understanding the effects of pollutants requires understanding how pollutants change following their release from a source, and how they can have effects many miles from their sources. For example, there are no significant direct emitters of air pollutant ozone. Rather, this major component of oxidant smog is formed in the air through the action of sunlight on a mixture of nitrogen oxides and hydrocarbons coming from many different sources, primarily automobiles. The precursors may have been emitted hundreds of miles upwind of where the ozone is eventually formed. For the northeastern United States, this means that statewide control strategies, which are the major enforcement focus of the U.S. Clean Air Act, are an inadequate approach to a regional issue. Similarly, acid rain and other forms of particulate air pollution can be derived from atmospheric reactions of gaseous sulfur dioxide and nitrogen oxides precursors occurring many hundreds of miles downwind. Agents released into water can also undergo significant changes. For example, methyl mercury, which is far more toxic than elemental mercury, is formed in water through the action of bacteria and makes its way into the food chain. The dumping of inorganic mercury from a single chloralkali plant in Minimata Bay, Japan, led to contamination of fish with methyl mercury and to over a hundred deaths and thousands of people being affected by what is known as Minimata disease. There is also a global air circulation of metals, such as mercury, and of persistent organic pollutants, such as PCBs, which tends to carry these agents toward the arctic where they often bioaccumulate.
Understanding the effects of pollutants on human health requires not only an understanding of the intrinsic hazard of the chemical or physical agent, but also the extent of human exposure. Exposure is often determined by local pathways within a community, such as whether drinking water comes from wells or from surface sources or whether individuals consume vegetables grown in their backyards or brought to market from far away. Individual activities can also alter pollutant intake; exercise, for example, increases respiratory uptake of air pollutants. Health effects due to pollutants are heavily dependent upon susceptibility factors, including age, gender, and genetic predisposition.
Managing Pollution
A variety of approaches have been developed to manage existing pollution. These include punishment of polluters through regulation, taxation, fines, toxic tort suits, and other disincentives; encouragement of nonpolluting approaches through tax and other incentives; and education of the public. The increased awareness of the potential harmful effects of pollution has had a major impact on industries and on individuals, particularly the young, who have led the way in activities such as recycling. Risk assessment has developed as a useful technique to estimate the risks of environmental pollutants and to establish priorities for environmental control and remediation efforts. These efforts to manage existing pollution are largely a form of secondary prevention in that the pollution already exists and the focus is on lessening the extent or the effects.
Primary prevention of pollution has occurred through approaches that, like any form of primary prevention, are both highly effective and difficult to quantify. The United States National Environmental Policy Act of 1969 was the first major action arising out of the new environmental movement aimed at avoiding unwanted environmental consequences. It contained the requirement that significant newly proposed federal activities have an environmental impact statement prepared in advance, the goal being the incorporation of environmental concerns into all planning processes and the avoidance of those activities that would have an adverse impact. Advances in science have had a significant primary preventive effect, in part through providing assessment tools of use in preventing the development of new harmful products by the chemical industry. As examples, a basic understanding of the role of mutation in cancer and recognition of the structural aspects resulting in the environmental persistence of chemicals have led the chemical industry to detect and quickly drop out of its development programs those new chemicals that are mutagens or are likely to persist in the environment. The Precautionary Principle is basic to public health practice, but is also now being advocated as a form of primary prevention of environmental pollution.
Control of the more challenging insidious pollutant effects related to the health of the planetary biosphere and to nonpoint sources cannot depend solely upon standard command and control regulatory approaches. Central to avoiding significant long-term consequences to health and the environment is the development of innovative pollution prevention and control strategies, including emissions trading, taxation of consumption and international compacts; better targeting of controls through improved scientific understanding of the processes involved; and a more informed public.
(SEE ALSO: Acid Rain; Airborne Particles; Ambient Air Quality [Air Pollution]; Ambient Water Quality; Arsenic; Automotive Emissions; Benzene; Carcinogen; Chlorofluorocarbons; Clean Air Act; Clean Water Act; Climate Change and Human Health; Ecosystems; Emissions Trading; Endocrine Disruptors; Environmental Impact Statement; Exposure Assessment; Groundwater; Human Genome Project; Lead; Mercury; National Environmental Policy Act of 1969; Nuclear Power; PCBs; Persistent Organic Pollutants [POPs]; Pesticides; Precautionary Principle; Radiation, Ionizing; Risk Assessment, Risk Management; Sulfur-Containing Air Pollutants [Particulates]; War)
Bibliography
United Nations Environment Programme (1999). Global Environment Outlook 2000—UNEP's Millennium Report on the Environment. London, UK: Earthscan Publications Ltd.
World Health Organization (1992). Report of the WHO Commission on Health and Environment. Geneva: Author.
— BERNARD D. GOLDSTEIN
This entry contains information applicable to United States law only.
The contamination of the air, water, or earth by harmful or potentially harmful substances.
The U.S. environmental movement in the 1960s emerged from concerns that air, water, and soil were being polluted by harmful chemicals and other toxic substances. During the industrial revolution of the nineteenth century, the mass production of goods created harmful wastes, much of which was dumped into rivers and streams. The twentieth century saw the popular acceptance of the automobile and the internal combustion engine, which led to the pollution of the air. Rapidly expanding urban centers began to use rivers and lakes as repositories for sewage.
Land pollution involves the depositing of solid wastes that are useless, unwanted, or hazardous. Types of solid waste include garbage, rubbish, ashes, sewage-treatment solids, industrial wastes, mining wastes, and agricultural wastes. Most solid waste is buried in sanitary landfills. A small percentage of municipalities incinerate their refuse, while composting is rarely employed.
Modern landfills attempt to minimize pollution of surface and groundwater. They are now located in areas that will not flood and that have the proper type of soil. Solid wastes are compacted in the landfill and are vented to eliminate the buildup of dangerous gases. Hazardous wastes, including toxic chemicals and flammable, radioactive, or biological substances, cannot be deposited in landfills, and the management of these wastes is subject to federal and state regulation. The federal government's Resource Conservation and Recovery Act (42 U.S.C.A. § 6901 et seq.) is a comprehensive regulatory statute that creates a "cradle to grave" system of controlling the entire hazardous waste life cycle.
Nuclear wastes are especially troublesome. Congress passed the Nuclear Waste Policy Act of 1982 (42 U.S.C.A. §§ 10101-226), which directed the Department of Energy to formally begin planning the disposal of nuclear wastes and imposed most of the costs of disposal on the nuclear power industry. Since 1986 the Department of Energy has been unsuccessful in finding an acceptable site. Yucca Mountain, Nevada, is the only place earmarked for a site study.
Solid waste pollution has been reduced by recovering resources rather than burying them. Resource recovery includes massive systems that burn waste to produce steam, but it also includes the recycling of glass, metal, and paper from individual consumers and businesses. The elimination of these kinds of materials from landfills has prevented pollution and extended the period during which landfills can receive waste.
Land pollution also involves the accumulation of chemicals in the ground. Modern agriculture, which has grown dependent on chemical fertilizers and chemicals that kill insects, has introduced substances into the soil that kill more than pests. For many years the chemical DDT was routinely sprayed on crops to control pests. It was banned when scientists discovered that the chemical entered the food chain and was harming wildlife and possibly humans.
Air pollution is regulated by the federal government. The Clean Air Act was originally enacted in 1970 and was extensively amended in 1977 and again in 1990 (42 U.S.C.A. §§ 7401-7626; Pub. L. No. 95-95 [1977 amendments]; Pub. L. No. 101-549 [1990 amendments]). Under its provisions, every stationary and mobile pollution source must comply with emission standards as a means of cleaning up the ambient air quality in the area. This has meant that automobile emission control systems have been created and improved to meet more stringent air quality standards. Coal-burning electric power plants have been required to install filtration systems on their smokestacks, and manufacturing facilities have had to install equipment that "scrubs" polluted air clean.
Water pollution has existed longer than any other type of pollution. Depositing liquid and solid wastes in rivers, streams, lakes, and oceans was convenient and inexpensive for a company or municipality, but it eventually destroyed the ecosystems found in the water. Many large rivers became nothing more than sewers. Most troubling was the polluting of groundwater, creating serious health hazards for those people who drank water containing toxic substances.
The federal Clean Water Act (CWA) was originally enacted in 1972 and then amended in 1977 and 1987 (33 U.S.C.A. §§ 1251-1387; Pub. L. No. 95-217 [1977 amendments]; Pub. L. No. 100-4 [1987 amendments]). The CWA seeks to eliminate the "discharge of pollutants into navigable waters," to make water safe for people to fish and swim in, and to end the "discharges of toxic pollutants in toxic amounts." The CWA seeks to accomplish these goals through a variety of regulatory strategies.
See: Environmental Law; Environmental Protection Agency; Land-Use Control; Solid Wastes, Hazardous Substances, and Toxic Pollutants.
Pollution is the introduction of contaminants into an environment that causes instability, disorder, harm or discomfort to the physical systems or living organisms they are in.[1] Pollution can take the form of chemical substances, or energy, such as noise, heat, or light energy. Pollutants, the elements of pollution, can be foreign substances or energies, or naturally occurring; when naturally occurring, they are considered contaminants when they exceed natural levels. Pollution is often classed as point source or nonpoint source pollution.
Contents
History
Prehistory
Humankind has had some effect upon the environment since the Paleolithic era during which the ability to generate fire was acquired. In the Iron Age, the use of tooling led to the practice of metal grinding on a small scale and resulted in minor accumulations of discarded material probably easily dispersed without too much impact. Human wastes would have polluted rivers or water sources to some degree. However, these effects could be expected predominantly to be dwarfed by the natural world.
Ancient cultures
The first advanced civilizations of Mesopotamia, Egypt, India, China, Persia, Greece and Rome increased the use of water for their manufacture of goods, increasingly forged metal and created fires of wood and peat for more elaborate purposes (for example, bathing, heating). Still, at this time the scale of higher activity did not disrupt ecosystems or greatly alter air or water quality.
Middle Ages
The European Dark Ages during the early Middle Ages were a great boon for the environment, in that industrial activity fell, and population levels did not grow rapidly. Toward the end of the Middle Ages populations grew and concentrated more within cities, creating pockets of readily evident contamination. In certain places air pollution levels were recognizable as health issues, and water pollution in population centers was a serious medium for disease transmission from untreated human waste.
Since travel and widespread information were less common, there did not exist a more general context than that of local consequences in which to consider pollution. Foul air would have been considered a nuissance and wood, or eventually, coal burning produced smoke, which in sufficient concentrations could be a health hazard in proximity to living quarters. Septic contamination or poisoning of a clean drinking water source was very easily fatal to those who depended on it, especially if such a resource was rare. Superstitions predominated and the extent of such concerns would probably have been little more than a sense of moderation and an avoidance of obvious extremes.
Official acknowledgement
But gradually increasing populations and the proliferation of basic industrial processes saw the emergence of a civilization that began to have a much greater collective impact on its surroundings. It was to be expected that the beginnings of environmental awareness would occur in the more developed cultures, particularly in the densest urban centers. The first medium warranting official policy measures in the emerging western world would be the most basic: the air we breathe.
The earliest known writings concerned with pollution were Arabic medical treatises written between the 9th and 13th centuries, by physicians such as al-Kindi (Alkindus), Qusta ibn Luqa (Costa ben Luca), Muhammad ibn Zakarīya Rāzi (Rhazes), Ibn Al-Jazzar, al-Tamimi, al-Masihi, Ibn Sina (Avicenna), Ali ibn Ridwan, Ibn Jumay, Isaac Israeli ben Solomon, Abd-el-latif, Ibn al-Quff, and Ibn al-Nafis. Their works covered a number of subjects related to pollution such as air contamination, water contamination, soil contamination, solid waste mishandling, and environmental assessments of certain localities.[2]
King Edward I of England banned the burning of sea-coal by proclamation in London in 1272, after its smoke had become a problem.[3][4] But the fuel was so common in England that this earliest of names for it was acquired because it could be carted away from some shores by the wheelbarrow. Air pollution would continue to be a problem there, especially later during the industrial revolution, and extending into the recent past with the Great Smog of 1952. This same city also recorded one of the earlier extreme cases of water quality problems with the Great Stink on the Thames of 1858, which led to construction of the London sewerage system soon afterward.
It was the industrial revolution that gave birth to environmental pollution as we know it today. The emergence of great factories and consumption of immense quantities of coal and other fossil fuels gave rise to unprecedented air pollution and the large volume of industrial chemical discharges added to the growing load of untreated human waste. Chicago and Cincinnati were the first two American cities to enact laws ensuring cleaner air in 1881. Other cities followed around the country until early in the 20th century, when the short lived Office of Air Pollution was created under the Department of the Interior. Extreme smog events were experienced by the cities of Los Angeles and Donora, Pennsylvania in the late 1940s, serving as another public reminder.[5]
Modern awareness
Pollution began to draw major public attention in the United States between the mid-1950s and early 1970s, when Congress passed the Noise Control Act, the Clean Air Act, the Clean Water Act and the National Environmental Policy Act.
Bad bouts of local pollution helped increase consciousness. PCB dumping in the Hudson River resulted in a ban by the EPA on consumption of its fish in 1974. Long-term dioxin contamination at Love Canal starting in 1947 became a national news story in 1978 and led to the Superfund legislation of 1980. Legal proceedings in the 1990s helped bring to light Chromium-6 releases in California--the champions of whose victims became famous. The pollution of industrial land gave rise to the name brownfield, a term now common in city planning. DDT was banned in most of the developed world after the publication of Rachel Carson's Silent Spring.
The development of nuclear science introduced radioactive contamination, which can remain lethally radioactive for hundreds of thousands of years. Lake Karachay, named by the Worldwatch Institute as the "most polluted spot" on earth, served as a disposal site for the Soviet Union thoroughout the 1950s and 1960s. Second place may go to the to the area of Chelyabinsk U.S.S.R. (see reference below) as the "Most polluted place on the planet".
Nuclear weapons continued to be tested in the Cold War, sometimes near inhabited areas, especially in the earlier stages of their development. The toll on the worst-affected populations and the growth since then in understanding about the critical threat to human health posed by radioactivity has also been a prohibitive complication associated with nuclear power. Though extreme care is practiced in that industry, the potential for disaster suggested by incidents such as those at Three Mile Island and Chernobyl pose a lingering specter of public mistrust. One legacy of nuclear testing before most forms were banned has been significantly raised levels of background radiation.
International catastrophes such as the wreck of the Amoco Cadiz oil tanker off the coast of Brittany in 1978 and the Bhopal disaster in 1984 have demonstrated the universality of such events and the scale on which efforts to address them needed to engage. The borderless nature of atmosphere and oceans inevitably resulted in the implication of pollution on a planetary level with the issue of global warming. Most recently the term persistent organic pollutant (POP) has come to describe a group of chemicals such as PBDEs and PFCs among others. Though their effects remain somewhat less well understood owing to a lack of experimental data, they have been detected in various ecological habitats far removed from industrial activity such as the Arctic, demonstrating diffusion and bioaccumulation after only a relatively brief period of widespread use.
Growing evidence of local and global pollution and an increasingly informed public over time have given rise to environmentalism and the environmental movement, which generally seek to limit human impact on the environment.
Pollution control
Pollution control is a term used in environmental management. It means the control of emissions and effluents into air, water or soil. Without pollution control, the waste products from consumption, heating, agriculture, mining, manufacturing, transportation and other human activities, whether they accumulate or disperse, will degrade the environment. In the hierarchy of controls, pollution prevention and waste minimization are more desirable than pollution control.
Pollution control devices
Major forms of pollution and major polluted areas
The major forms of pollution are listed below along with the particular pollutants relevant to each of them:
- Air pollution, the release of chemicals and particulates into the atmosphere. Common gaseous air pollutants include carbon monoxide, sulfur dioxide, chlorofluorocarbons (CFCs) and nitrogen oxides produced by industry and motor vehicles. Photochemical ozone and smog are created as nitrogen oxides and hydrocarbons react to sunlight. Particulate matter, characterized by size PM10 to PM2.5, is produced from natural sources such as volcanoes or as residual oil fly ash from power plants. Diesel particles are another class of airborne particulate matter.
- Water pollution, by the release of waste products and contaminants into surface runoff into river drainage systems, leaching into groundwater, liquid spills, wastewater discharges, eutrophication and littering.
- Soil contamination occurs when chemicals are released by spill or underground leakage. Among the most significant soil contaminants are hydrocarbons, heavy metals, MTBE[8], herbicides, pesticides and chlorinated hydrocarbons.
- Radioactive contamination, resulting from 20th century activities in atomic physics, such as nuclear power generation and nuclear weapons research, manufacture and deployment. (See alpha emitters and actinides in the environment.)
- Noise pollution, which encompasses roadway noise, aircraft noise, industrial noise as well as high-intensity sonar.
- Light pollution, includes light trespass, over-illumination and astronomical interference.
- Visual pollution, which can refer to the presence of overhead power lines, motorway billboards, scarred landforms (as from strip mining), open storage of trash or municipal solid waste.
- Thermal pollution, is a temperature change in natural water bodies caused by human influence, such as use of water as coolant in a power plant.
The Blacksmith Institute issues annually a list of the world's worst polluted places. In the 2007 issues the ten top nominees are located in Azerbaijan, China, India, Peru, Russia, Ukraine and Zambia.
Sources and causes
Motor vehicle emissions are one of the leading causes of air pollution.[9][10][11] China, United States, Russia, Mexico, and Japan are the world leaders in air pollution emissions; however, Canada is the number two country, ranked per capita. Principal stationary pollution sources include chemical plants, coal-fired power plants, oil refineries,[7] petrochemical plants, nuclear waste disposal activity, incinerators, large livestock farms (dairy cows, pigs, poultry, etc.), PVC factories, metals production factories, plastics factories, and other heavy industry.
Some of the more common soil contaminants are chlorinated hydrocarbons (CFH), heavy metals (such as chromium, cadmium--found in rechargeable batteries, and lead--found in lead paint, aviation fuel and still in some countries, gasoline), MTBE, zinc, arsenic and benzene. In 2001 a series of press reports culminating in a book called Fateful Harvest unveiled a widespread practice of recycling industrial byproducts into fertilizer, resulting in the contamination of the soil with various metals. Ordinary municipal landfills are the source of many chemical substances entering the soil environment (and often groundwater), emanating from the wide variety of refuse accepted, especially substances illegally discarded there, or from pre-1970 landfills that may have been subject to little control in the U.S. or EU. There have also been some unusual releases of polychlorinated dibenzodioxins, commonly called dioxins for simplicity, such as TCDD.[12]
Pollution can also be the consequence of a natural disaster. For example, hurricanes often involve water contamination from sewage, and petrochemical spills from ruptured boats or automobiles. Larger scale and environmental damage is not uncommon when coastal oil rigs or refineries are involved. Some sources of pollution, such as nuclear power plants or oil tankers, can produce widespread and potentially hazardous releases when accidents occur.
In the case of noise pollution the dominant source class is the motor vehicle, producing about ninety percent of all unwanted noise worldwide.
Effects
Human health
Adverse air quality can kill many organisms including humans. Ozone pollution can cause respiratory disease, cardiovascular disease, throat inflammation, chest pain, and congestion. Water pollution causes approximately 14,000 deaths per day, mostly due to contamination of drinking water by untreated sewage in developing countries. Oil spills can cause skin irritations and rashes. Noise pollution induces hearing loss, high blood pressure, stress, and sleep disturbance. Mercury has been linked to developmental deficits in children and neurologic symptoms. Lead and other heavy metals have been shown to cause neurological problems. Chemical and radioactive substances can cause cancer and as well as birth defects.
Ecosystems
- Sulfur dioxide and oxides of nitrogen can cause acid rain which reduces the pH value of soil.
- Soil can become infertile and unsuitable for plants. This will affect other organisms in the food web.
- Smog and haze can reduce the amount of sunlight received by plants to carry out photosynthesis.
- Invasive species can out compete native species and reduce biodiversity. Invasive plants can contribute debris and biomolecules (allelopathy) that can alter soil and chemical compositions of an environment, often reducing native species competitiveness.
- Biomagnification describes a situation where toxins may pass through trophic levels, becoming exponentially more concentrated in the process.
- Ocean acidification, the ongoing decrease in the pH of the Earth's oceans.
- Global warming.
Regulation and monitoring
To protect the environment from the adverse effects of pollution, many nations worldwide have enacted legislation to regulate various types of pollution as well as to mitigate the adverse effects of pollution.
Philosophical recognition
Throughout history from Ancient Greece to Andalusia, Ancient China, central Europe during the Renaissance until today, philosophers ranging from Aristotle, Al-Farabi, Al-Ghazali, Averroes, Buddha, Confucius, Dante, Hegel, Avicenna, Lao Tse, Maimonedes, Montesquieu, Nussbaum, Plato, Socrates and Sun Tzu wrote about the pollution of the body as well as the mind and soul.
Perspectives
The earliest precursor of pollution generated by life forms would have been a natural function of their existence. The attendant consequences on viability and population levels fell within the sphere of natural selection. These would have included the demise of a population locally or ultimately, species extinction. Processes that were untenable would have resulted in a new balance brought about by changes and adaptations. At the extremes, for any form of life, consideration of pollution is superseded by that of survival.
For mankind, the factor of technology is a distinguishing and critical consideration, both as an enabler and an additional source of byproducts. Short of survival, human concerns include the range from quality of life to health hazards. Since science holds experimental demonstration to be definitive, modern treatment of toxicity or environmental harm involves defining a level at which an effect is observable. Common examples of fields where practical measurement is crucial include automobile emissions control, industrial exposure (eg Occupational Safety and Health Administration (OSHA) PELs), toxicology (eg LD50), and medicine (eg medication and radiation doses).
"The solution to pollution is dilution", is a dictum which summarizes a traditional approach to pollution management whereby sufficiently diluted pollution is not harmful.[13][14] It is well-suited to some other modern, locally-scoped applications such as laboratory safety procedure and hazardous material release emergency management. But it assumes that the dilutant is in virtually unlimited supply for the application or that resulting dilutions are acceptable in all cases.
Such simple treatment for environmental pollution on a wider scale might have had greater merit in earlier centuries when physical survival was often the highest imperative, human population and densities were lower, technologies were simpler and their byproducts more benign. But these are often no longer the case. Furthermore, advances have enabled measurement of concentrations not possible before. The use of statistical methods in evaluating outcomes has given currency to the principle of probable harm in cases where assessment is warranted but resorting to deterministic models is impractical or unfeasible. In addition, consideration of the environment beyond direct impact on human beings has gained prominence.
Yet in the absence of a superseding principle, this older approach predominates practices throughout the world. It is the basis by which to gauge concentrations of effluent for legal release, exceeding which penalties are assessed or restrictions applied. The regressive cases are those where a controlled level of release is too high or, if enforceable, is neglected. Migration from pollution dilution to elimination in many cases is confronted by challenging economical and technological barriers.
Greenhouse gases and global warming
-
Main article: Global warming
Carbon dioxide, while vital for photosynthesis, is sometimes referred to as pollution, because raised levels of the gas in the atmosphere are affecting the Earth's climate. Disruption of the environment can also highlight the connection between areas of pollution that would normally be classified separately, such as those of water and air. Recent studies have investigated the potential for long-term rising levels of atmospheric carbon dioxide to cause slight but critical increases in the acidity of ocean waters, and the possible effects of this on marine ecosystems.
See also
- Environmental epidemiology
- Environmental remediation
- List of environment topics
- Timeline of environmental events
|
|
|
Other |
References
- ^ Pollution - Definition from the Merriam-Webster Online Dictionary
- ^ L. Gari (2002), "Arabic Treatises on Environmental Pollution up to the End of the Thirteenth Century", Environment and History 8 (4), pp. 475-488.
- ^ David Urbinato (Summer 1994). "London's Historic "Pea-Soupers"". United States Environmental Protection Agency. Retrieved on 2006-08-02.
- ^ "Deadly Smog". PBS (2003-01-17). Retrieved on 2006-08-02.
- ^ James R. Fleming; Bethany R. Knorr of Colby College. "History of the Clean Air Act". American Meteorological Society. Retrieved on 2006-02-14.
- ^ American Petroleum Institute (API) (February 1990). Management of Water Discharges: Design and Operations of Oil-Water Separators (1st Edition ed.), American Petroleum Institute.
- ^ a b Beychok, Milton R. (1967). Aqueous Wastes from Petroleum and Petrochemical Plants (1st Edition ed.), John Wiley & Sons. LCCN 67019834.
- ^ Concerns about MTBE from U.S. EPA website
- ^ Environmental Performance Report 2001 (Transport, Canada website page)
- ^ State of the Environment, Issue: Air Quality (Australian Government website page)
- ^ Pollution and Society Marisa Buchanan and Carl Horwitz, University of Michigan
- ^ Beychok, Milton R. (January 1987). "A data base for dioxin and furan emissions from refuse incinerators". Atmospheric Environment 21 (1): 29–36. doi:10.1016/0004-6981(87)90267-8.
- ^ Gershon Cohen Ph.D.. "The 'Solution' to Pollution Is Still 'Dilution'". Earth Island Institute. Retrieved on 2006-02-14.
- ^ "What is required". Clean Ocean Foundation (2001). Retrieved on 2006-02-14.
- ^ World Carbon Dioxide Emissions (Table 1, Report DOE/EIA-0573, 2004, Energy Information Administration)
- ^ Carbon dioxide emissions chart (graph on Mongabay website page based on Energy Information Administration's tabulated data)
External links
- Environmental Defense Fund
- Environmental Working Group
- Institute for Energy and Environmental Research
- OEHHA proposition 65 list
- OSHA limits for air contaminants
- National Toxicology Program - from USA National Institutes of Health. Reports and studies on how pollutants affect people.
- Toxnet - NIH databases and reports on toxicology.
- Superfund - manages Superfund sites and the pollutants in them (CERCLA).
- Toxic Release Inventory - tracks how much waste USA companies release into the water and air. Gives permits for releasing specific quantities of these pollutants each year. Map
- Agency for Toxic Substances and Disease Registry - Top 20 pollutants, how they affect people, what USA industries use them and the products in which they are found
- The ToxTutor from the National Library of Medicine - a resource to review human toxicology.
- Pollution Information from, Woods Hole Oceanographic Institution
- World's Worst Polluted Places 2007, according to the Blacksmith Institute
- The World's Most Polluted Places at Time.com (a division of Time Magazine)
- Chelyabinsk: The Most Contaminated Spot on the Planet Documentary Film by Slawomir Grünberg (1996)
This entry is from Wikipedia, the leading user-contributed encyclopedia. It may not have been reviewed by professional editors (see full disclaimer)
The United States Environmental Protection Agency (EPA) is the federal body responsible for regulating pollution and for protecting human health and the environment. Learn more about the EPA at www.epa.gov.
Air
Pollutant |
Health Effect |
Environmental Effect |
---|---|---|
Carbon Monoxide |
Reduces ability of blood to bring oxygen to body cells and tissues; cells and tissues need oxygen to work. Carbon monoxide may be particularly hazardous to people who have heart or circulatory (blood vessel) problems and people who have damaged lungs or breathing passages |
|
Lead |
Brain and other nervous system damage; children are at special risk. Some lead-containing chemicals cause cancer in animals. Lead causes digestive and other health problems. |
Lead can harm wildlife |
Ground Level Ozone |
Breathing problems, reduced lung function, asthma, irritates eyes, stuffy nose, reduced resistance to colds and other infections, may speed up aging of lung tissue |
Ozone can damage plants and trees; smog can cause reduced visibility |
Nitrogen Oxides (NOx) |
Lung damage, illnesses of breathing passages and lungs (respiratory system) |
Nitrogen dioxide is an ingredient of acid rain (acid aerosols), which can damage trees and lakes. Acid aerosols can reduce visibility. |
Particulate Matter |
Nose and throat irritation, lung damage, bronchitis, early death |
Particulates are the main source of haze that reduces visibility |
Sulfur Oxides (SOx) |
Breathing problems, may cause permanent damage to lungs |
SO2 is an ingredient in acid cause permanent damage rain (acid aerosols), which can to lungs damage trees and lakes. Acid aerosols can also reduce visibility. |
Volatile Organic Compounds (VOCs) |
In addition to ozone (smog) effects, many VOCs can cause serious health problems such as cancer and other effects. |
In addition to ozone (smog) effects, some VOCs such as formaldehyde and ethylene may harm plants. |
Water
Pollutant |
Health Effect |
---|---|
Contaminated Sediment |
Metals, PAHs, and organics listed above are toxic to various plants and animals, including people. These contaminants tend to biomagnify as they travel up the food chain. All have been linked to health problems in people. |
Disinfection By products |
Acute and chronic gastrointestinal illness, cancer, liver toxicity, and reproductive and developmental disorders |
Dredged Materials |
Acute and chronic gastrointestinal illness, cancer, liver toxicity, and reproductive and developmental disorders |
Microbial Pathogens |
Acute and chronic gastrointestinal illness, cancer, liver toxicity, and reproductive and developmental disorders |
Land
Pollutant |
Health Effect |
---|---|
Arsenic |
Skin damage; circulatory system problems; increased risk of cancer |
Barium |
Increase in blood pressure |
Benzene |
Anemia; decrease in blood platelets; increased risk of cancer |
Cadmium |
Kidney damage |
Cyanide |
Nerve damage or thyroid problems |
Lead |
Infants and children: Delays in physical or mental development. Adults: Kidney problems; high blood pressure |
Mercury |
Kidney damage |
Polychlorinated Biphenyls (PCBs) |
Skin changes; thymus gland problems; immune deficiencies; reproductive or nervous system difficulties; increased risk of cancer |
Toluene |
Nervous system, kidney, or liver problems |
Trichloroethylene (TCE) |
Liver problems; increased risk of cancer |
United States Environmental Protection Agency. “Water Pollutants,” www.epa.gov/ebtpages/pwaterpollutants.html
United States Environmental Protection Agency. “Air Pollutants,” www.epa.gov/ebtpages/pairpollutants.html
United States Environmental Protection Agency. “Soil Pollutants,” www.epa.gov/ebtpages/psoilcontaminants.html
Dansk (Danish)
n. - forurening, vanhelligelse
Nederlands (Dutch)
vervuiling, verontreiniging
Français (French)
n. - (Écol) pollution, (fig) corruption
Deutsch (German)
n. - Verschmutzung, Verunreinigung
Ελληνική (Greek)
n. - μόλυνση, ρύπανση
Italiano (Italian)
inquinamento
Português (Portuguese)
n. - poluição (f)
Русский (Russian)
загрязнение, осквернение
Español (Spanish)
n. - contaminación, polución
Svenska (Swedish)
n. - förorening, miljöförstöring, besudlande, skändning
中文(简体) (Chinese (Simplified))
污染, 玷污
中文(繁體) (Chinese (Traditional))
n. - 污染, 玷污
日本語 (Japanese)
n. - 汚染, 公害, 汚染物質, 汚染地域, 堕落
العربيه (Arabic)
(الاسم) تلوث
עברית (Hebrew)
n. - זיהום, השחתה, חילול
If you are unable to view some languages clearly, click here.
To select your translation preferences click here.