American Mathematical Society
- ️@authorUsername
- ️Fri Jul 04 9947
Remote Access
- Current volume
- Articles in press
- Recently published
- All issues : 1900 – Present
Finite generation of symmetric ideals
HTML articles powered by AMS MathViewer
- by Matthias Aschenbrenner and Christopher J. Hillar PDF
- Trans. Amer. Math. Soc. 359 (2007), 5171-5192 Request permission
Erratum: Trans. Amer. Math. Soc. 361 (2009), 5627-5627.
Abstract:
Let $A$ be a commutative Noetherian ring, and let $R = A[X]$ be the polynomial ring in an infinite collection $X$ of indeterminates over $A$. Let ${\mathfrak S}_{X}$ be the group of permutations of $X$. The group ${\mathfrak S}_{X}$ acts on $R$ in a natural way, and this in turn gives $R$ the structure of a left module over the group ring $R[{\mathfrak S}_{X}]$. We prove that all ideals of $R$ invariant under the action of ${\mathfrak S}_{X}$ are finitely generated as $R[{\mathfrak S}_{X}]$-modules. The proof involves introducing a certain well-quasi-ordering on monomials and developing a theory of Gröbner bases and reduction in this setting. We also consider the concept of an invariant chain of ideals for finite-dimensional polynomial rings and relate it to the finite generation result mentioned above. Finally, a motivating question from chemistry is presented, with the above framework providing a suitable context in which to study it.References
- William W. Adams and Philippe Loustaunau, An introduction to Gröbner bases, Graduate Studies in Mathematics, vol. 3, American Mathematical Society, Providence, RI, 1994. MR 1287608, DOI 10.1090/gsm/003
- Gisela Ahlbrandt and Martin Ziegler, Quasi-finitely axiomatizable totally categorical theories, Ann. Pure Appl. Logic 30 (1986), no. 1, 63–82. Stability in model theory (Trento, 1984). MR 831437, DOI 10.1016/0168-0072(86)90037-0
- Alan R. Camina and David M. Evans, Some infinite permutation modules, Quart. J. Math. Oxford Ser. (2) 42 (1991), no. 165, 15–26. MR 1094338, DOI 10.1093/qmath/42.1.15
- M. Drton, B. Sturmfels and S. Sullivant, Algebraic factor analysis: Tetrads, pentads and beyond, Probability Theory and Related Fields, to appear.
- P. Erdős and R. Rado, A theorem on partial well-ordering of sets of vectors, J. London Math. Soc. 34 (1959), 222–224. MR 103841, DOI 10.1112/jlms/s1-34.2.222
- David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry. MR 1322960, DOI 10.1007/978-1-4612-5350-1
- Graham Higman, Ordering by divisibility in abstract algebras, Proc. London Math. Soc. (3) 2 (1952), 326–336. MR 49867, DOI 10.1112/plms/s3-2.1.326
- T. A. Jenkyns and C. St. J. A. Nash-Williams, Counterexamples in the theory of well-quasi-ordered sets, Proof Techniques in Graph Theory (Proc. Second Ann Arbor Graph Theory Conf., Ann Arbor, Mich., 1968) Academic Press, New York, 1969, pp. 87–91. MR 0253943
- Joseph B. Kruskal, The theory of well-quasi-ordering: A frequently discovered concept, J. Combinatorial Theory Ser. A 13 (1972), 297–305. MR 306057, DOI 10.1016/0097-3165(72)90063-5
- A. Mead, E. Ruch, A. Schönhofer, Theory of chirality functions, generalized for molecules with chiral ligands. Theor. Chim. Acta 29 (1973), 269–304.
- Ruth I. Michler, Gröbner bases of symmetric quotients and applications, Algebra, arithmetic and geometry with applications (West Lafayette, IN, 2000) Springer, Berlin, 2004, pp. 627–637. MR 2037115
- E. C. Milner, Well-quasi-ordering of sequences of ordinal numbers, J. London Math. Soc. 43 (1968), 291–296. MR 224479, DOI 10.1112/jlms/s1-43.1.291
- C. St. J. A. Nash-Williams, On well-quasi-ordering finite trees, Proc. Cambridge Philos. Soc. 59 (1963), 833–835. MR 153601, DOI 10.1017/s0305004100003844
- C. St. J. A. Nash-Williams, On well-quasi-ordering transfinite sequences, Proc. Cambridge Philos. Soc. 61 (1965), 33–39. MR 173640, DOI 10.1017/s0305004100038603
- R. Rado, Partial well-ordering of sets of vectors, Mathematika 1 (1954), 89–95. MR 66441, DOI 10.1112/S0025579300000565
- E. Ruch, A. Schönhofer, Theorie der Chiralitätsfunktionen, Theor. Chim. Acta 19 (1970), 225–287.
- E. Ruch, A. Schönhofer, I. Ugi, Die Vandermondesche Determinante als Näherungsansatz für eine Chiralitätsbeobachtung, ihre Verwendung in der Stereochemie und zur Berechnung der optischen Aktivität, Theor. Chim. Acta 7 (1967), 420–432.
- Bernd Sturmfels, Gröbner bases and convex polytopes, University Lecture Series, vol. 8, American Mathematical Society, Providence, RI, 1996. MR 1363949, DOI 10.1090/ulect/008
Additional Information
- Matthias Aschenbrenner
- Affiliation: Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, Chicago, Illinois 60607
- Email: maschenb@math.uic.edu
- Christopher J. Hillar
- Affiliation: Department of Mathematics, University of California, Berkeley, California 94720
- Address at time of publication: Department of Mathematics, Texas A&M University, College Station, Texas 77843
- Email: chillar@math.berkeley.edu, chillar@math.tamu.edu
- Received by editor(s): July 26, 2004
- Received by editor(s) in revised form: April 29, 2005
- Published electronically: June 22, 2007
- Additional Notes: The first author was partially supported by the National Science Foundation Grant DMS 03-03618.
The work of the second author was supported under a National Science Foundation Graduate Research Fellowship. - © Copyright 2007 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 359 (2007), 5171-5192
- MSC (2000): Primary 13E05, 13E15, 20B30, 06A07
- DOI: https://doi.org/10.1090/S0002-9947-07-04116-5
- MathSciNet review: 2327026
Dedicated: In memoriam Karin Gatermann (1965–2005).