Anthropogenic carbon release rate unprecedented during the past 66 million years - Nature Geoscience
- ️Zachos, James C.
- ️Mon Mar 21 2016
References
Le Quéré, C. et al. Global carbon budget 2015. Earth Syst. Sci. Data 7, 349–396 (2015).
IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).
Zachos, J. C., Dickens, G. R. & Zeebe, R. E. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451, 279–283 (2008).
Rohling, E. J. et al. Making sense of palaeoclimate sensitivity. Nature 491, 683–691 (2012).
Dickens, G. R., O’Neil, J. R., Rea, D. K. & Owen, R. M. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography 10, 965–971 (1995).
Zachos, J. C., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).
Zachos, J. C. et al. Rapid acidification of the ocean during the Paleocene–Eocene Thermal Maximum. Science 308, 1611–1615 (2005).
Zeebe, R. E., Zachos, J. C. & Dickens, G. R. Carbon dioxide forcing alone insufficient to explain Palaeocene-Eocene Thermal Maximum warming. Nature Geosci. 2, 576–580 (2009).
McInerney, F. A. & Wing, S. L. The Paleocene–Eocene Thermal Maximum: a perturbation of carbon cycle, climate, and biosphere with implications for the future. Annu. Rev. Earth Planet. Sci. 39, 489–516 (2011).
Rogner, H. An assessment of world hydrocarbon resources. Annu. Rev. Energy Environ. 22, 217–262 (1997).
McGlade, C. & Ekins, P. The geographical distribution of fossil fuels unused when limiting global warming to 2 °C. Nature 517, 187–190 (2015).
Ridgwell, A. & Schmidt, D. Past constraints on the vulnerability of marine calcifiers to massive carbon dioxide release. Nature Geosci. 3, 196–200 (2010).
Zeebe, R. E. & Zachos, J. C. Long-term legacy of massive carbon input to the Earth system: Anthropocene vs. Eocene. Phil. Trans. R. Soc. A 371, 20120006 (2013).
Farley, K. A. & Eltgroth, S. F. An alternative age model for the Paleocene-Eocene thermal maximum using extraterrestrial 3He. Earth Planet. Sci. Lett. 208, 135–148 (2003).
Murphy, B. H., Farley, K. A. & Zachos, J. C. An extraterrestrial 3He-based timescale for the Paleocene-Eocene thermal maximum (PETM) from Walvis Ridge, IODP Site 1266. Geochim. Cosmochim. Acta 74, 5098–5108 (2010).
John, C. M. et al. North American continental margin records of the Paleocene-Eocene thermal maximum: implications for global carbon and hydrological cycling. Paleoceanography 23, PA2217 (2008).
Hansen, J. et al. Climate response times: dependence on climate sensitivity and ocean mixing. Science 229, 857–859 (1985).
Roe, G. Feedbacks, timescales, and seeing red. Annu. Rev. Earth Planet. Sci. 37, 93–115 (2009).
Hansen, J., Sato, M., Kharecha, P. & von Schuckmann, K. Earth’s energy imbalance and implications. Atmos. Chem. Phys. 11, 13421–13449 (2011).
Zachos, J. C. et al. The Paleocene-Eocene carbon isotope excursion: constraints from individual shell planktonic foraminifer records. Phil. Trans. R. Soc. A 365, 1829–1842 (2007).
Stassen, P., Thomas, E. & Speijer, R. P. Integrated stratigraphy of the Paleocene-Eocene thermal maximum in the New Jersey Coastal Plain: toward understanding the effects of global warming in a shelf environment. Paleoceanography 27, PA4210 (2012).
Makarova, M., Miller, K. G., Wright, J. D., Rosenthal, Y. & Babila, T. Temperature and salinity changes associated with the Paleocene-Eocene Carbon Isotope Excursion along the mid Atlantic margin. AGU Fall Meeting abstr. PP33C–2322 (2015).
Wright, J. D. & Schaller, M. F. Evidence for a rapid release of carbon at the Paleocene-Eocene thermal maximum. Proc. Natl Acad. Sci. USA 110, 15908–15913 (2013).
Pearson, P. N. & Thomas, E. Drilling disturbance and constraints on the onset of the Paleocene-Eocene boundary carbon isotope excursion in New Jersey. Clim. Past 11, 95–104 (2015).
Zachos, J. C. et al. Extreme warming of mid-latitude coastal ocean during the Paleocene–Eocene Thermal Maximum: inferences from TEX86 and isotope data. Geology 34, 737–740 (2006).
Wei, W. W. S. Time Series Analysis: Inivariate and Multivariate Methods (Addison-Wesley, 1990).
Chatfield, C. The Analysis of Time Series: An Introduction 6th edn (CRC Press, 2004).
Box, G. E. P. & Jenkins, G. M. Time Series Analysis: Forecasting and Control (Holden-Day, 1970).
Zeebe, R. E. LOSCAR: long-term ocean-atmosphere-sediment carbon cycle reservoir model v2.0.4. Geosci. Model Dev. 5, 149–166 (2012).
Zeebe, R. E. Time-dependent climate sensitivity and the legacy of anthropogenic greenhouse gas emissions. Proc. Natl Acad. Sci. USA 110, 13739–13744 (2013).
Sluijs, A. et al. Environmental precursors to rapid light carbon injection at the Palaeocene/Eocene boundary. Nature 450, 1218–1221 (2007).
Bowen, G. J. et al. Two massive, rapid releases of carbon during the onset of the Palaeocene-Eocene thermal maximum. Nature Geosci. 8, 44–47 (2015).
Bralower, T. J., Meissner, K. J., Alexander, K. & Thomas, D. J. The dynamics of global change at the Paleocene-Eocene thermal maximum: a data-model comparison. Geochem. Geophys. Geosyst. 15, 3830–3848 (2014).
National Research Council Abrupt Impacts of Climate Change: Anticipating Surprises (The National Academies Press, 2013).
Robinson, A., Calov, R. & Ganopolski, A. Multistability and critical thresholds of the Greenland ice sheet. Nature Clim. Change 2, 429–432 (2012).
Caldeira, K. & Wickett, M. E. Anthropogenic carbon and ocean pH. Nature 425, 365 (2003).
Zeebe, R. E., Zachos, J. C., Caldeira, K. & Tyrrell, T. Oceans: carbon emissions and acidification (in perspectives). Science 321, 51–52 (2008).
Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).