pubmed.ncbi.nlm.nih.gov

Statistical analysis of pathogenicity of somatic mutations in cancer - PubMed

Statistical analysis of pathogenicity of somatic mutations in cancer

Chris Greenman et al. Genetics. 2006 Aug.

Abstract

Recent large-scale sequencing studies have revealed that cancer genomes contain variable numbers of somatic point mutations distributed across many genes. These somatic mutations most likely include passenger mutations that are not cancer causing and pathogenic driver mutations in cancer genes. Establishing a significant presence of driver mutations in such data sets is of biological interest. Whereas current techniques from phylogeny are applicable to large data sets composed of singly mutated samples, recently exemplified with a p53 mutation database, methods for smaller data sets containing individual samples with multiple mutations need to be developed. By constructing distinct models of both the mutation process and selection pressure upon the cancer samples, exact statistical tests to examine this problem are devised. Tests to examine the significance of selection toward missense, nonsense, and splice site mutations are derived, along with tests assessing variation in selection between functional domains. Maximum-likelihood methods facilitate parameter estimation, including levels of selection pressure and minimum numbers of pathogenic mutations. These methods are illustrated with 25 breast cancers screened across the coding sequences of 518 kinase genes, revealing 90 base substitutions in 71 genes. Significant selection pressure upon truncating mutations was established. Furthermore, an estimated minimum of 29.8 mutations were pathogenic.

PubMed Disclaimer

Similar articles

Cited by

  • Characterizing genetic intra-tumor heterogeneity across 2,658 human cancer genomes.

    Dentro SC, Leshchiner I, Haase K, Tarabichi M, Wintersinger J, Deshwar AG, Yu K, Rubanova Y, Macintyre G, Demeulemeester J, Vázquez-García I, Kleinheinz K, Livitz DG, Malikic S, Donmez N, Sengupta S, Anur P, Jolly C, Cmero M, Rosebrock D, Schumacher SE, Fan Y, Fittall M, Drews RM, Yao X, Watkins TBK, Lee J, Schlesner M, Zhu H, Adams DJ, McGranahan N, Swanton C, Getz G, Boutros PC, Imielinski M, Beroukhim R, Sahinalp SC, Ji Y, Peifer M, Martincorena I, Markowetz F, Mustonen V, Yuan K, Gerstung M, Spellman PT, Wang W, Morris QD, Wedge DC, Van Loo P; PCAWG Evolution and Heterogeneity Working Group and the PCAWG Consortium. Dentro SC, et al. Cell. 2021 Apr 15;184(8):2239-2254.e39. doi: 10.1016/j.cell.2021.03.009. Epub 2021 Apr 7. Cell. 2021. PMID: 33831375 Free PMC article.

  • A comprehensive catalogue of somatic mutations from a human cancer genome.

    Pleasance ED, Cheetham RK, Stephens PJ, McBride DJ, Humphray SJ, Greenman CD, Varela I, Lin ML, Ordóñez GR, Bignell GR, Ye K, Alipaz J, Bauer MJ, Beare D, Butler A, Carter RJ, Chen L, Cox AJ, Edkins S, Kokko-Gonzales PI, Gormley NA, Grocock RJ, Haudenschild CD, Hims MM, James T, Jia M, Kingsbury Z, Leroy C, Marshall J, Menzies A, Mudie LJ, Ning Z, Royce T, Schulz-Trieglaff OB, Spiridou A, Stebbings LA, Szajkowski L, Teague J, Williamson D, Chin L, Ross MT, Campbell PJ, Bentley DR, Futreal PA, Stratton MR. Pleasance ED, et al. Nature. 2010 Jan 14;463(7278):191-6. doi: 10.1038/nature08658. Epub 2009 Dec 16. Nature. 2010. PMID: 20016485 Free PMC article.

  • Recurrent high-impact mutations at cognate structural positions in class A G protein-coupled receptors expressed in tumors.

    Huh E, Gallion J, Agosto MA, Wright SJ, Wensel TG, Lichtarge O. Huh E, et al. Proc Natl Acad Sci U S A. 2021 Dec 21;118(51):e2113373118. doi: 10.1073/pnas.2113373118. Proc Natl Acad Sci U S A. 2021. PMID: 34916293 Free PMC article.

  • Defining the blueprint of the cancer genome.

    Velculescu VE. Velculescu VE. Carcinogenesis. 2008 Jun;29(6):1087-91. doi: 10.1093/carcin/bgn096. Epub 2008 May 20. Carcinogenesis. 2008. PMID: 18495658 Free PMC article. Review.

  • RAG-mediated recombination is the predominant driver of oncogenic rearrangement in ETV6-RUNX1 acute lymphoblastic leukemia.

    Papaemmanuil E, Rapado I, Li Y, Potter NE, Wedge DC, Tubio J, Alexandrov LB, Van Loo P, Cooke SL, Marshall J, Martincorena I, Hinton J, Gundem G, van Delft FW, Nik-Zainal S, Jones DR, Ramakrishna M, Titley I, Stebbings L, Leroy C, Menzies A, Gamble J, Robinson B, Mudie L, Raine K, O'Meara S, Teague JW, Butler AP, Cazzaniga G, Biondi A, Zuna J, Kempski H, Muschen M, Ford AM, Stratton MR, Greaves M, Campbell PJ. Papaemmanuil E, et al. Nat Genet. 2014 Feb;46(2):116-25. doi: 10.1038/ng.2874. Epub 2014 Jan 12. Nat Genet. 2014. PMID: 24413735 Free PMC article.

References

    1. Béroud, C., and T. Soussi, 2003. The UMD-p53 database: new mutations and analysis tools. Hum. Mutat. 21: 176–181. - PubMed
    1. Cox, D. R., and D. V. Hinkley, 1974. Theoretical Statistics. Chapman & Hall, London.
    1. Davies, H., G. R. Bignell, C. Cox, P. Stephens, S. Edkins et al., 2002. Mutations of the BRAF gene in human cancer. Nature 417: 949–954. - PubMed
    1. Futreal, P. A., L. Coin, M. Marshall, T. Down, T. Hubbard et al., 2004. A census of human cancer genes. Nat. Rev. Cancer 4: 177–183. - PMC - PubMed
    1. Goldman, N., and Z. Yang, 1994. A codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol. Biol. Evol. 11(5): 725–736. - PubMed

Publication types

MeSH terms

Substances