Rates of spontaneous cleavage of glucose, fructose, sucrose, and trehalose in water, and the catalytic proficiencies of invertase and trehalas - PubMed
- ️Tue Jan 01 2008
. 2008 Jun 18;130(24):7548-9.
doi: 10.1021/ja802206s. Epub 2008 May 28.
Affiliations
- PMID: 18505259
- PMCID: PMC2664835
- DOI: 10.1021/ja802206s
Rates of spontaneous cleavage of glucose, fructose, sucrose, and trehalose in water, and the catalytic proficiencies of invertase and trehalas
Richard Wolfenden et al. J Am Chem Soc. 2008.
Abstract
Most of the early experimental work on enzyme kinetics was based on the properties of yeast invertase (beta-fructo-furanosidase, EC 3.2.1.26), whose robust activity(1) (together with the availability of a continuous polarimetric assay) enabled Michaelis and Menten to establish the existence of a quantitative relationship between the rate of an enzyme reaction and the concentration of its substrate.(2) To appreciate the proficiency of an enzyme as a catalyst, it is also desirable to have information about the relative rates of the catalyzed and uncatalyzed reactions.(3) Surprisingly, the literature discloses no report of the rate of spontaneous hydrolysis of sucrose (although there have been many studies of the acid-catalyzed reaction).(4) That information would be of special interest in view of the remarkable resistance to hydrolysis (t1/2 approximately 10(7) y),(5) of the 1-4 "head-to-tail" glycosidic linkages that join the common glucose polymers cellulose, chitin, amylose, and glycogen. Thus, polysaccharide hydrolases (e.g., beta-amylase) generate the largest rate enhancements that are known to be produced by hydrolytic enzymes that operate without the assistance of metals or other cofactors.(6) Here, we describe the uncatalyzed hydrolysis of sucrose and trehalose, in which the constituent monosaccharides are symmetrically joined, by a "head-to-head" glycosidic linkage between their carbonyl groups (Chart ).
Figures
Similar articles
-
Lahiri S, Basu A, Sengupta S, Banerjee S, Dutta T, Soren D, Chattopadhyay K, Ghosh AK. Lahiri S, et al. Arch Biochem Biophys. 2012 Jun 15;522(2):90-9. doi: 10.1016/j.abb.2012.03.026. Epub 2012 Mar 30. Arch Biochem Biophys. 2012. PMID: 22484163
-
Xie J, Cai K, Hu HX, Jiang YL, Yang F, Hu PF, Cao DD, Li WF, Chen Y, Zhou CZ. Xie J, et al. J Biol Chem. 2016 Dec 2;291(49):25667-25677. doi: 10.1074/jbc.M116.759290. Epub 2016 Oct 24. J Biol Chem. 2016. PMID: 27777307 Free PMC article.
-
Khandekar DC, Palai T, Agarwal A, Bhattacharya PK. Khandekar DC, et al. Bioprocess Biosyst Eng. 2014 Dec;37(12):2529-37. doi: 10.1007/s00449-014-1230-5. Epub 2014 Jun 19. Bioprocess Biosyst Eng. 2014. PMID: 24938994
-
Kotwal SM, Shankar V. Kotwal SM, et al. Biotechnol Adv. 2009 Jul-Aug;27(4):311-22. doi: 10.1016/j.biotechadv.2009.01.009. Biotechnol Adv. 2009. PMID: 19472508 Review.
-
Enzyme kinetics by real-time quantitative NMR (qNMR) spectroscopy with progress curve analysis.
Vang JY, Breceda C Jr, Her C, Krishnan VV. Vang JY, et al. Anal Biochem. 2022 Dec 1;658:114919. doi: 10.1016/j.ab.2022.114919. Epub 2022 Sep 22. Anal Biochem. 2022. PMID: 36154835 Review.
Cited by
-
Real-time assay of invertase activity using isoquinolinylboronic acid as turn-on fluorescent sensor.
Chen Q, Han M, Yang Y, Zhou H, Chen J, Liu W. Chen Q, et al. Anal Bioanal Chem. 2023 Sep;415(22):5297-5309. doi: 10.1007/s00216-023-04841-1. Epub 2023 Jul 13. Anal Bioanal Chem. 2023. PMID: 37439855
-
Jung MY, Baek CH, Ma Y, Lee HW. Jung MY, et al. Food Sci Biotechnol. 2024 Jun 25;33(10):2333-2342. doi: 10.1007/s10068-024-01633-w. eCollection 2024 Jul. Food Sci Biotechnol. 2024. PMID: 39145120
-
A mixture of "cheats" and "co-operators" can enable maximal group benefit.
MaClean RC, Fuentes-Hernandez A, Greig D, Hurst LD, Gudelj I. MaClean RC, et al. PLoS Biol. 2010 Sep 14;8(9):e1000486. doi: 10.1371/journal.pbio.1000486. PLoS Biol. 2010. PMID: 20856906 Free PMC article.
-
Oliveira ALM, Santos OJAP, Marcelino PRF, Milani KML, Zuluaga MYA, Zucareli C, Gonçalves LSA. Oliveira ALM, et al. Front Microbiol. 2017 Sep 26;8:1873. doi: 10.3389/fmicb.2017.01873. eCollection 2017. Front Microbiol. 2017. PMID: 29018432 Free PMC article.
-
Igarashi K, Koivula A, Wada M, Kimura S, Penttilä M, Samejima M. Igarashi K, et al. J Biol Chem. 2009 Dec 25;284(52):36186-36190. doi: 10.1074/jbc.M109.034611. Epub 2009 Oct 26. J Biol Chem. 2009. PMID: 19858200 Free PMC article.
References
-
- O’Sullivan C.; Thompson F. W. J. Chem. Soc. 1890, 834–931.
-
- Michaelis L.; Menten M. L. Biochem. Z. 1913, 49, 333–355.
-
- Radzicka R; Wolfenden R. Science 1995, 267, 90–93. - PubMed
-
- Capon B. Chem. Rev. 1969, 69, 407–499.
-
- Wolfenden R.; Lu X.; Young G. J. Am. Chem. Soc. 1998, 120, 6814–6815.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources