Measurement of the elastic properties and intrinsic strength of monolayer graphene - PubMed
- ️Tue Jan 01 2008
. 2008 Jul 18;321(5887):385-8.
doi: 10.1126/science.1157996.
Affiliations
- PMID: 18635798
- DOI: 10.1126/science.1157996
Measurement of the elastic properties and intrinsic strength of monolayer graphene
Changgu Lee et al. Science. 2008.
Abstract
We measured the elastic properties and intrinsic breaking strength of free-standing monolayer graphene membranes by nanoindentation in an atomic force microscope. The force-displacement behavior is interpreted within a framework of nonlinear elastic stress-strain response, and yields second- and third-order elastic stiffnesses of 340 newtons per meter (N m(-1)) and -690 Nm(-1), respectively. The breaking strength is 42 N m(-1) and represents the intrinsic strength of a defect-free sheet. These quantities correspond to a Young's modulus of E = 1.0 terapascals, third-order elastic stiffness of D = -2.0 terapascals, and intrinsic strength of sigma(int) = 130 gigapascals for bulk graphite. These experiments establish graphene as the strongest material ever measured, and show that atomically perfect nanoscale materials can be mechanically tested to deformations well beyond the linear regime.
Similar articles
-
Stretching and breaking of ultrathin MoS2.
Bertolazzi S, Brivio J, Kis A. Bertolazzi S, et al. ACS Nano. 2011 Dec 27;5(12):9703-9. doi: 10.1021/nn203879f. Epub 2011 Nov 16. ACS Nano. 2011. PMID: 22087740
-
Rasuli R, Iraji Zad A, Ahadian MM. Rasuli R, et al. Nanotechnology. 2010 May 7;21(18):185503. doi: 10.1088/0957-4484/21/18/185503. Epub 2010 Apr 14. Nanotechnology. 2010. PMID: 20388969
-
Elasticity of polyelectrolyte multilayer microcapsules.
Lulevich VV, Andrienko D, Vinogradova OI. Lulevich VV, et al. J Chem Phys. 2004 Feb 22;120(8):3822-6. doi: 10.1063/1.1644104. J Chem Phys. 2004. PMID: 15268547
-
Estimating the elastic properties of few-layer graphene from the free-standing indentation response.
Zhou L, Wang Y, Cao G. Zhou L, et al. J Phys Condens Matter. 2013 Nov 27;25(47):475301. doi: 10.1088/0953-8984/25/47/475301. Epub 2013 Oct 28. J Phys Condens Matter. 2013. PMID: 24166876
-
A transforming metal nanocomposite with large elastic strain, low modulus, and high strength.
Hao S, Cui L, Jiang D, Han X, Ren Y, Jiang J, Liu Y, Liu Z, Mao S, Wang Y, Li Y, Ren X, Ding X, Wang S, Yu C, Shi X, Du M, Yang F, Zheng Y, Zhang Z, Li X, Brown DE, Li J. Hao S, et al. Science. 2013 Mar 8;339(6124):1191-4. doi: 10.1126/science.1228602. Science. 2013. PMID: 23471404
Cited by
-
Stress transfer mechanisms at the submicron level for graphene/polymer systems.
Anagnostopoulos G, Androulidakis C, Koukaras EN, Tsoukleri G, Polyzos I, Parthenios J, Papagelis K, Galiotis C. Anagnostopoulos G, et al. ACS Appl Mater Interfaces. 2015 Feb 25;7(7):4216-23. doi: 10.1021/am508482n. Epub 2015 Feb 16. ACS Appl Mater Interfaces. 2015. PMID: 25644121 Free PMC article.
-
Zhang Y, Li N, Liu B, Zhang H. Zhang Y, et al. Sensors (Basel). 2024 Jan 7;24(2):355. doi: 10.3390/s24020355. Sensors (Basel). 2024. PMID: 38257448 Free PMC article.
-
Kang Y, Ruan H, Claus RO, Heremans J, Orlowski M. Kang Y, et al. Nanoscale Res Lett. 2016 Dec;11(1):179. doi: 10.1186/s11671-016-1387-8. Epub 2016 Apr 5. Nanoscale Res Lett. 2016. PMID: 27044308 Free PMC article.
-
Corr SJ, Raoof M, Cisneros BT, Kuznetsov O, Massey K, Kaluarachchi WD, Cheney MA, Billups EW, Wilson LJ, Curley SA. Corr SJ, et al. Nanoscale Res Lett. 2013 May 2;8(1):208. doi: 10.1186/1556-276X-8-208. Nanoscale Res Lett. 2013. PMID: 23639042 Free PMC article.
-
Photoaccelerated Water Dissociation Across One-Atom-Thick Electrodes.
Cai J, Griffin E, Guarochico-Moreira V, Barry D, Xin B, Huang S, Geim AK, Peeters FM, Lozada-Hidalgo M. Cai J, et al. Nano Lett. 2022 Dec 14;22(23):9566-9570. doi: 10.1021/acs.nanolett.2c03701. Epub 2022 Nov 30. Nano Lett. 2022. PMID: 36449567 Free PMC article.
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources