Isolation of genetically diverse Marburg viruses from Egyptian fruit bats - PubMed
- ️Tue Aug 19 2014
. 2009 Jul;5(7):e1000536.
doi: 10.1371/journal.ppat.1000536. Epub 2009 Jul 31.
Brian R Amman, Tara K Sealy, Serena A Reeder Carroll, James A Comer, Alan Kemp, Robert Swanepoel, Christopher D Paddock, Stephen Balinandi, Marina L Khristova, Pierre B H Formenty, Cesar G Albarino, David M Miller, Zachary D Reed, John T Kayiwa, James N Mills, Deborah L Cannon, Patricia W Greer, Emmanuel Byaruhanga, Eileen C Farnon, Patrick Atimnedi, Samuel Okware, Edward Katongole-Mbidde, Robert Downing, Jordan W Tappero, Sherif R Zaki, Thomas G Ksiazek, Stuart T Nichol, Pierre E Rollin
Affiliations
- PMID: 19649327
- PMCID: PMC2713404
- DOI: 10.1371/journal.ppat.1000536
Isolation of genetically diverse Marburg viruses from Egyptian fruit bats
Jonathan S Towner et al. PLoS Pathog. 2009 Jul.
Abstract
In July and September 2007, miners working in Kitaka Cave, Uganda, were diagnosed with Marburg hemorrhagic fever. The likely source of infection in the cave was Egyptian fruit bats (Rousettus aegyptiacus) based on detection of Marburg virus RNA in 31/611 (5.1%) bats, virus-specific antibody in bat sera, and isolation of genetically diverse virus from bat tissues. The virus isolates were collected nine months apart, demonstrating long-term virus circulation. The bat colony was estimated to be over 100,000 animals using mark and re-capture methods, predicting the presence of over 5,000 virus-infected bats. The genetically diverse virus genome sequences from bats and miners closely matched. These data indicate common Egyptian fruit bats can represent a major natural reservoir and source of Marburg virus with potential for spillover into humans.
Conflict of interest statement
The authors have declared that no competing interests exist.
Figures

In the liver, viral antigens were distributed in and around hepatocytes in a dense (A) or loose (B) perimembranous pattern. Rarely, entire hepatocytes were involved (C). These infected foci were characteristically sparse and were often associated with small collections of mononuclear inflammatory cells and hepatocyte necrosis (D and E), although infected cells could also be identified without conspicuous inflammatory infiltrates. Only rare viral antigens were seen in a few mononuclear cells of the spleen of 1 bat (F). Immunoalkaline phosphatase with napthol fast-red and hematoxylin counterstain (A–C, E, F), and hematoxylin and eosin (D); original magnifications ×100 (A, B, D, E) and ×258 (C, F).

Trees shown are maximum-likelihood analyses with Bayesian posterior probabilities >50 listed at the appropriate nodes. The ebolavirus outgroup used during the Bayesian phylogenetic analyses are denoted by the small twig at the root of the tree. Marburg virus sequences from 2007 human cases in Uganda are in green, while those from bats are listed in red. (A) Analysis of full-length genomes of five Marburg virus bat isolates, 18 historical isolates, and the isolates from patients A and B (01Uga07 and 02Uga07 respectively). (B) Phylogenetic analysis of concatenated NP and VP35 sequence fragments obtained from each bat specimen compared to corresponding regions from 48 historical isolates and those from 01Uga07 and 02Uga07.
Similar articles
-
Amman BR, Carroll SA, Reed ZD, Sealy TK, Balinandi S, Swanepoel R, Kemp A, Erickson BR, Comer JA, Campbell S, Cannon DL, Khristova ML, Atimnedi P, Paddock CD, Crockett RJ, Flietstra TD, Warfield KL, Unfer R, Katongole-Mbidde E, Downing R, Tappero JW, Zaki SR, Rollin PE, Ksiazek TG, Nichol ST, Towner JS. Amman BR, et al. PLoS Pathog. 2012;8(10):e1002877. doi: 10.1371/journal.ppat.1002877. Epub 2012 Oct 4. PLoS Pathog. 2012. PMID: 23055920 Free PMC article.
-
Amman BR, Jones ME, Sealy TK, Uebelhoer LS, Schuh AJ, Bird BH, Coleman-McCray JD, Martin BE, Nichol ST, Towner JS. Amman BR, et al. J Wildl Dis. 2015 Jan;51(1):113-24. doi: 10.7589/2014-08-198. J Wildl Dis. 2015. PMID: 25375951 Free PMC article.
-
Marburgvirus in Egyptian Fruit Bats, Zambia.
Kajihara M, Hang'ombe BM, Changula K, Harima H, Isono M, Okuya K, Yoshida R, Mori-Kajihara A, Eto Y, Orba Y, Ogawa H, Qiu Y, Sawa H, Simulundu E, Mwizabi D, Munyeme M, Squarre D, Mukonka V, Mweene A, Takada A. Kajihara M, et al. Emerg Infect Dis. 2019 Aug;25(8):1577-1580. doi: 10.3201/eid2508.190268. Epub 2019 Aug 17. Emerg Infect Dis. 2019. PMID: 31146800 Free PMC article.
-
Laminger F, Prinz A. Laminger F, et al. Wien Klin Wochenschr. 2010 Oct;122 Suppl 3(Suppl 3):19-30. doi: 10.1007/s00508-010-1434-x. Wien Klin Wochenschr. 2010. PMID: 20924703 Free PMC article. Review. German.
-
Marburg Virus- A Threat During SARS-CoV-2 Era: A Review.
Ashique S, Chaudhary V, Pal S, Panwar J, Kumar M, Pramanik S, Sinha A, Mukherjee A. Ashique S, et al. Infect Disord Drug Targets. 2023;23(5):e280223214111. doi: 10.2174/1871526523666230228103845. Infect Disord Drug Targets. 2023. PMID: 36852815 Review.
Cited by
-
Metagenomic Snapshots of Viral Components in Guinean Bats.
Hermida Lorenzo RJ, Cadar D, Koundouno FR, Juste J, Bialonski A, Baum H, García-Mudarra JL, Hakamaki H, Bencsik A, Nelson EV, Carroll MW, Magassouba N, Günther S, Schmidt-Chanasit J, Muñoz Fontela C, Escudero-Pérez B. Hermida Lorenzo RJ, et al. Microorganisms. 2021 Mar 15;9(3):599. doi: 10.3390/microorganisms9030599. Microorganisms. 2021. PMID: 33803988 Free PMC article.
-
Biannual birth pulses allow filoviruses to persist in bat populations.
Hayman DT. Hayman DT. Proc Biol Sci. 2015 Mar 22;282(1803):20142591. doi: 10.1098/rspb.2014.2591. Proc Biol Sci. 2015. PMID: 25673678 Free PMC article.
-
Molecular evolution of viruses of the family Filoviridae based on 97 whole-genome sequences.
Carroll SA, Towner JS, Sealy TK, McMullan LK, Khristova ML, Burt FJ, Swanepoel R, Rollin PE, Nichol ST. Carroll SA, et al. J Virol. 2013 Mar;87(5):2608-16. doi: 10.1128/JVI.03118-12. Epub 2012 Dec 19. J Virol. 2013. PMID: 23255795 Free PMC article.
-
Detection of Nipah virus RNA in fruit bat (Pteropus giganteus) from India.
Yadav PD, Raut CG, Shete AM, Mishra AC, Towner JS, Nichol ST, Mourya DT. Yadav PD, et al. Am J Trop Med Hyg. 2012 Sep;87(3):576-8. doi: 10.4269/ajtmh.2012.11-0416. Epub 2012 Jul 16. Am J Trop Med Hyg. 2012. PMID: 22802440 Free PMC article.
-
Reproduction of East-African bats may guide risk mitigation for coronavirus spillover.
Montecino-Latorre D, Goldstein T, Gilardi K, Wolking D, Van Wormer E, Kazwala R, Ssebide B, Nziza J, Sijali Z, Cranfield M; PREDICT Consortium; Mazet JAK. Montecino-Latorre D, et al. One Health Outlook. 2020 Feb 7;2:2. doi: 10.1186/s42522-019-0008-8. eCollection 2020. One Health Outlook. 2020. PMID: 33824945 Free PMC article.
References
-
- Smith MW. Field aspects of the Marburg virus outbreak: 1967. Primate Supply. 1982;7:11–15.
-
- Conrad JL, Isaacson M, Smith EB, Wulff H, Crees M, et al. Epidemiologic investigation of Marburg virus disease, Southern Africa, 1975. Am J Trop Med Hyg. 1978;27:1210–1215. - PubMed
-
- Arata AA, Johnson B, Pattyn SR. Approaches towards studies on potential reservoirs of viral haemorrhagic fever in Southern Sudan (1977) Amsterdam: Elsevier/North Holland Biomedical Press; 1978. pp. 191–202.
-
- Smith DH, Johnson BK, Isaacson M, Swanepoel R, Johnson KM, et al. Marburg-virus disease in Kenya. Lancet. 1982;1:816–820. - PubMed
-
- Johnson ED, Johnson BK, Silverstein D, Tukei P, Geisbert TW, et al. Characterization of a new Marburg virus isolated from a 1987 fatal case in Kenya. Arch Virol. 1996;11:101–114. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases