pubmed.ncbi.nlm.nih.gov

Effects of aerobic exercise on brain metabolism and grey matter volume in older adults: results of the randomised controlled SMART trial - PubMed

  • ️Sun Jan 01 2017

Randomized Controlled Trial

. 2017 Jul 18;7(7):e1172.

doi: 10.1038/tp.2017.135.

Affiliations

Randomized Controlled Trial

Effects of aerobic exercise on brain metabolism and grey matter volume in older adults: results of the randomised controlled SMART trial

S Matura et al. Transl Psychiatry. 2017.

Abstract

There is mounting evidence that aerobic exercise has a positive effect on cognitive functions in older adults. To date, little is known about the neurometabolic and molecular mechanisms underlying this positive effect. The present study used magnetic resonance spectroscopy and quantitative MRI to systematically explore the effects of physical activity on human brain metabolism and grey matter (GM) volume in healthy aging. This is a randomised controlled assessor-blinded two-armed trial (n=53) to explore exercise-induced neuroprotective and metabolic effects on the brain in cognitively healthy older adults. Participants (age >65) were allocated to a 12-week individualised aerobic exercise programme intervention (n=29) or a 12-week waiting control group (n=24). The main outcomes were the change in cerebral metabolism and its association to brain-derived neurotrophic factor (BDNF) levels as well as changes in GM volume. We found that cerebral choline concentrations remained stable after 12 weeks of aerobic exercise in the intervention group, whereas they increased in the waiting control group. No effect of training was seen on cerebral N-acetyl-aspartate concentrations, nor on markers of neuronal energy reserve or BDNF levels. Further, we observed no change in cortical GM volume in response to aerobic exercise. The finding of stable choline concentrations in the intervention group over the 3 month period might indicate a neuroprotective effect of aerobic exercise. Choline might constitute a valid marker for an effect of aerobic exercise on cerebral metabolism in healthy aging.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1

Target region and representative spectra. The upper row shows 1H data with the target region indicated by the blue box in the image. The spectrum on the right can be assigned to the yellow marked grey matter voxel. Main metabolites are labelled with abbreviations for total choline: tCho (the sum of glycerophosphocholine and phosphocholine), total creatine: tCr (the sum of phosphocreatine and creatine), and N-acetylaspartate (NAA). The broken red line shows the result of the LCModel fit, the blue line the baseline obtained by LCModel. The lower row shows 31P data with the target region indicated by the blue box in the image. Values for voxels incorporated only partially into the target area were weighted according to their partial contribution. The spectrum on the right can be assigned to the yellow marked predominantly grey matter voxel. Metabolites are labelled with abbreviations for phosphoethanolamine (PEth), phosphocholine (PCho), glycerophosphoethanolamine (GPE) glycerophosphocholine (GPC), phosphocreatine (PCr) and the three signals of adenosine-tri-phosphate (ATP). The broken red line shows the result of the jMRUI fit.

Figure 2
Figure 2

Study flow chart.

Figure 3
Figure 3

Effect of aerobic exercise on cerebral NAA/Cho and Cho/Cr concentrations. The figure depicts box-and-whisker plots with maximum, minimum and median. There was a significant group × time interaction (P=0.04) for cerebral NAA/tCho. The significant interaction of cerebral NAA/tCho concentrations was mainly driven by an increase of tCho/Cr in the waiting control group (P=0.017, paired t-test), whereas changes in the training group were not significant (P=0.52).

Similar articles

Cited by

References

    1. Colcombe SJ, Kramer AF, Erickson KI, Scalf P, McAuley E, Cohen NJ et al. Cardiovascular fitness, cortical plasticity, and aging. Proc Natl Acad Sci USA 2004; 101: 3316–3321. - PMC - PubMed
    1. Liu-Ambrose T, Nagamatsu LS, Graf P, Beattie BL, Ashe MC, Handy TC. Resistance training and executive functions: a 12-month randomized controlled trial. Arch Intern Med 2010; 170: 170–178. - PMC - PubMed
    1. Nagamatsu LS, Handy TC, Hsu CL, Voss M, Liu-Ambrose T. Resistance training promotes cognitive and functional brain plasticity in seniors with probable mild cognitive impairment. Arch Intern Med 2012; 172: 666–668. - PMC - PubMed
    1. Erickson KI, Voss MW, Prakash RS, Basak C, Szabo A, Chaddock L et al. Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci USA 2011; 108: 3017–3022. - PMC - PubMed
    1. Erickson KI, Weinstein AM, Lopez OL. Physical activity, brain plasticity, and Alzheimer's disease. Arch Med Res 2012; 43: 615–621. - PMC - PubMed

Publication types

MeSH terms

Substances