Mutual potentiation of plant immunity by cell-surface and intracellular receptors - PubMed
. 2021 Apr;592(7852):110-115.
doi: 10.1038/s41586-021-03315-7. Epub 2021 Mar 10.
Affiliations
- PMID: 33692545
- DOI: 10.1038/s41586-021-03315-7
Mutual potentiation of plant immunity by cell-surface and intracellular receptors
Bruno Pok Man Ngou et al. Nature. 2021 Apr.
Abstract
The plant immune system involves cell-surface receptors that detect intercellular pathogen-derived molecules, and intracellular receptors that activate immunity upon detection of pathogen-secreted effector proteins that act inside the plant cell. Immunity mediated by surface receptors has been extensively studied1, but that mediated by intracellular receptors has rarely been investigated in the absence of surface-receptor-mediated immunity. Furthermore, interactions between these two immune pathways are poorly understood. Here, by activating intracellular receptors without inducing surface-receptor-mediated immunity, we analyse interactions between these two distinct immune systems in Arabidopsis. Pathogen recognition by surface receptors activates multiple protein kinases and NADPH oxidases, and we find that intracellular receptors primarily potentiate the activation of these proteins by increasing their abundance through several mechanisms. Likewise, the hypersensitive response that depends on intracellular receptors is strongly enhanced by the activation of surface receptors. Activation of either immune system alone is insufficient to provide effective resistance against the bacterial pathogen Pseudomonas syringae. Thus, immune pathways activated by cell-surface and intracellular receptors in plants mutually potentiate to activate strong defences against pathogens. These findings reshape our understanding of plant immunity and have broad implications for crop improvement.
Comment in
-
Pruitt RN, Gust AA, Nürnberger T. Pruitt RN, et al. Nat Plants. 2021 Apr;7(4):382-383. doi: 10.1038/s41477-021-00903-3. Nat Plants. 2021. PMID: 33785867 No abstract available.
-
Plant immunity: Crosstalk between plant immune receptors.
Bjornson M, Zipfel C. Bjornson M, et al. Curr Biol. 2021 Jun 21;31(12):R796-R798. doi: 10.1016/j.cub.2021.04.080. Curr Biol. 2021. PMID: 34157265
Similar articles
-
Pattern-recognition receptors are required for NLR-mediated plant immunity.
Yuan M, Jiang Z, Bi G, Nomura K, Liu M, Wang Y, Cai B, Zhou JM, He SY, Xin XF. Yuan M, et al. Nature. 2021 Apr;592(7852):105-109. doi: 10.1038/s41586-021-03316-6. Epub 2021 Mar 10. Nature. 2021. PMID: 33692546 Free PMC article.
-
CPR5 positively regulates pattern-triggered immunity via a mediator protein.
Ma M, Li M, Zhou R, Yu JB, Wu Y, Zhang X, Wang J, Zhou JM, Liang X. Ma M, et al. J Integr Plant Biol. 2023 Jul;65(7):1613-1619. doi: 10.1111/jipb.13472. Epub 2023 May 3. J Integr Plant Biol. 2023. PMID: 36856338
-
The multilevel and dynamic interplay between plant and pathogen.
Hou S, Yang Y, Zhou JM. Hou S, et al. Plant Signal Behav. 2009 Apr;4(4):283-93. doi: 10.4161/psb.4.4.8155. Plant Signal Behav. 2009. PMID: 19794843 Free PMC article. Retracted. Review.
-
Crabill E, Joe A, Block A, van Rooyen JM, Alfano JR. Crabill E, et al. Plant Physiol. 2010 Sep;154(1):233-44. doi: 10.1104/pp.110.159723. Epub 2010 Jul 12. Plant Physiol. 2010. PMID: 20624999 Free PMC article.
-
Roudaire T, Héloir MC, Wendehenne D, Zadoroznyj A, Dubrez L, Poinssot B. Roudaire T, et al. Front Immunol. 2021 Mar 8;11:612452. doi: 10.3389/fimmu.2020.612452. eCollection 2020. Front Immunol. 2021. PMID: 33763054 Free PMC article. Review.
Cited by
-
Diversity and Evolution of NLR Genes in Citrus Species.
Xiong Z, Zhang W, Yin H, Wan J, Wu Z, Gao Y. Xiong Z, et al. Biology (Basel). 2024 Oct 14;13(10):822. doi: 10.3390/biology13100822. Biology (Basel). 2024. PMID: 39452131 Free PMC article.
-
Hu J, Chang R, Yuan Y, Li Z, Wang Y. Hu J, et al. Front Microbiol. 2022 Aug 15;13:869596. doi: 10.3389/fmicb.2022.869596. eCollection 2022. Front Microbiol. 2022. PMID: 36046019 Free PMC article.
-
Comparative and evolutionary analysis of Arabidopsis RIN4-like/NOI proteins induced by herbivory.
Contreras E, Martinez M. Contreras E, et al. PLoS One. 2022 Sep 27;17(9):e0270791. doi: 10.1371/journal.pone.0270791. eCollection 2022. PLoS One. 2022. PMID: 36166429 Free PMC article.
-
Weber KC, Mahmoud LM, Stanton D, Welker S, Qiu W, Grosser JW, Levy A, Dutt M. Weber KC, et al. Front Plant Sci. 2022 Oct 21;13:1019295. doi: 10.3389/fpls.2022.1019295. eCollection 2022. Front Plant Sci. 2022. PMID: 36340410 Free PMC article.
-
Skiba RM, Wyatt NA, Kariyawasam GK, Fiedler JD, Yang S, Brueggeman RS, Friesen TL. Skiba RM, et al. Theor Appl Genet. 2022 Oct;135(10):3597-3609. doi: 10.1007/s00122-022-04204-x. Epub 2022 Sep 5. Theor Appl Genet. 2022. PMID: 36065067
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources