Rates of decomposition of ribose and other sugars: implications for chemical evolution - PubMed
- ️Sun Jan 01 1995
Rates of decomposition of ribose and other sugars: implications for chemical evolution
R Larralde et al. Proc Natl Acad Sci U S A. 1995.
Abstract
The existence of the RNA world, in which RNA acted as a catalyst as well as an informational macromolecule, assumes a large prebiotic source of ribose or the existence of pre-RNA molecules with backbones different from ribose-phosphate. The generally accepted prebiotic synthesis of ribose, the formose reaction, yields numerous sugars without any selectivity. Even if there were a selective synthesis of ribose, there is still the problem of stability. Sugars are known to be unstable in strong acid or base, but there are few data for neutral solutions. Therefore, we have measured the rate of decomposition of ribose between pH 4 and pH 8 from 40 degrees C to 120 degrees C. The ribose half-lives are very short (73 min at pH 7.0 and 100 degrees C and 44 years at pH 7.0 and 0 degrees C). The other aldopentoses and aldohexoses have half-lives within an order of magnitude of these values, as do 2-deoxyribose, ribose 5-phosphate, and ribose 2,4-bisphosphate. These results suggest that the backbone of the first genetic material could not have contained ribose or other sugars because of their instability.
Similar articles
-
Effects of Silicate, Phosphate, and Calcium on the Stability of Aldopentoses.
Nitta S, Furukawa Y, Kakegawa T. Nitta S, et al. Orig Life Evol Biosph. 2016 Jun;46(2-3):189-202. doi: 10.1007/s11084-015-9472-z. Epub 2015 Nov 11. Orig Life Evol Biosph. 2016. PMID: 26559965
-
Selective stabilization of ribose by borate.
Furukawa Y, Horiuchi M, Kakegawa T. Furukawa Y, et al. Orig Life Evol Biosph. 2013 Oct;43(4-5):353-61. doi: 10.1007/s11084-013-9350-5. Epub 2013 Dec 19. Orig Life Evol Biosph. 2013. PMID: 24352855
-
Do Soluble Phosphates Direct the Formose Reaction towards Pentose Sugars?
Camprubi E, Harrison SA, Jordan SF, Bonnel J, Pinna S, Lane N. Camprubi E, et al. Astrobiology. 2022 Aug;22(8):981-991. doi: 10.1089/ast.2021.0125. Epub 2022 Jul 12. Astrobiology. 2022. PMID: 35833833
-
Prebiotic Pathway from Ribose to RNA Formation.
Banfalvi G. Banfalvi G. Int J Mol Sci. 2021 Apr 8;22(8):3857. doi: 10.3390/ijms22083857. Int J Mol Sci. 2021. PMID: 33917807 Free PMC article. Review.
-
The quest for the chemical roots of life.
Hall N. Hall N. Chem Commun (Camb). 2004 Jun 7;(11):1247-52. doi: 10.1039/b401124b. Epub 2004 Apr 29. Chem Commun (Camb). 2004. PMID: 15154028 Review. No abstract available.
Cited by
-
Kawamura K, Maeda J. Kawamura K, et al. Orig Life Evol Biosph. 2007 Apr;37(2):153-65. doi: 10.1007/s11084-006-9063-0. Epub 2007 Jan 30. Orig Life Evol Biosph. 2007. PMID: 17265100
-
Kawamura K. Kawamura K. Life (Basel). 2017 Oct 2;7(4):37. doi: 10.3390/life7040037. Life (Basel). 2017. PMID: 28974048 Free PMC article. Review.
-
Efficient Heritable Gene Expression Readily Evolves in RNA Pools.
Yarus M. Yarus M. J Mol Evol. 2017 Jun;84(5-6):236-252. doi: 10.1007/s00239-017-9800-1. Epub 2017 Jul 1. J Mol Evol. 2017. PMID: 28669113 Free PMC article.
-
Bains W, Xiao Y, Yu C. Bains W, et al. Life (Basel). 2015 Mar 26;5(2):1054-100. doi: 10.3390/life5021054. Life (Basel). 2015. PMID: 25821932 Free PMC article.
-
Rios AC, Yu HT, Tor Y. Rios AC, et al. J Phys Org Chem. 2015 Mar;28(3):173-180. doi: 10.1002/poc.3318. J Phys Org Chem. 2015. PMID: 25750482 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources