als.wikipedia.org

Zaalesüsteem - Alemannische Wikipedia

Us der alemannische Wikipedia, der freie Dialäkt-Enzyklopedy

E Zaalesüsteem wird zur Daarstellig vo Zaale verwändet. Jeedes Zaalesüsteem het Reegle, wien e Zaal als e Folg vo Ziffere beziejingswiis Zaalezäiche daargstellt wird.

Die modärni Forschig underschäidet zwüsche additiven, hübride und posizionelle (Stellewärt-) Zaalesüsteem.

*

Wie die Alte Egüpter 4622 gschriibe häi

Im ene Addizionssüsteem wird e Zaal as Summe vo de Wärt vo iire Ziffere daargstellt. D Posizioon vo de äinzelne Ziffere spiilt drbii käi Rolle.

E Bischbil isch s Strichlisüsteem (Unärsüsteem), wo mä vilmol brucht, wenn mä öbbis will schriftlig mitzele (wie zum Bischbil d Getränk uf eme Bierdeckel). D Zaal {\displaystyle n} wird doo mit {\displaystyle n} Strichli daargstellt. Das isch vermuetlig äins vo de eltiste Zeelsüsteem überhaupt. S Unärsüsteem wird seer schnäll unübersichtlig, wemm mä gröösseri Zaale daarstellt. Dorum isch s mäistens üüblig, ass mä d Zaale in Blöck zämmefasst, zum Bischbil ass mä jeede fümft Strich kweer über die vier Äinzelstrich vornedraa schribt. S Ufzele isch also bi däm Süsteem seer äifach, was bi andere Süsteem im Allgemäine nit eso liicht ggot.

Mä schribt d Grundziffere vor em Zäiche, wo as Potänz von dr Basis gältet und die bäide Wärt wärde mitenander multipliziert. In de öiropäische Zaalesüsteem si sonigi Hübridsüsteem so guet wie nie vorchoo, in Mesopotamie aber scho sit em Aafang vom zwäite Joorduusig v. d. Z., spööter au z China und im Nooche Oste allgemäin. Sonigi Süsteem si au us Ethiopie, us Südindie und Sri Lanka und us dr Maya-Kultur bekannt.

Bischbil im japanisch/chinesische Zaalesüsteem

    23:  二十三  (2 × 10 + 3)
30.000:  三万    (3 × 10.000)

Im ene Stellewärtsüsteem (Posizionssüsteem) bestimmt d Stell (Posizion) vom Wärt vo dr jewiilige Ziffere. D Posizion mit em niidrigste Wärt stoot im Allgemäine rächts.

E Stellewärtsüsteem het e Basis {\displaystyle b} (mä reedet au von e {\displaystyle b}-adische Zaalesüsteem). Jedi Ziffereposizion het e Wärt, wo dr Potänz vo dr Basis entspricht. Für die {\displaystyle n}-ti Posizion het mä e Wärt vo {\displaystyle b^{n}} (wenn d Posizion mit em niidrigste Wärt mit 0 nummeriert isch).

Mä berächnet dr Wärt vo dr Zaal indäm mä die äinzelne Zifferewärt {\displaystyle z_{i}} mit de Stellewärt {\displaystyle b^{i}} wo zuene ghööre multipliziert und denn die Produkt zämmezelt:

Zaalewärt = {\displaystyle z_{n}\cdot b^{n}+\dotsb +z_{i}\cdot b^{i}+\dotsb +z_{0}\cdot b^{0}}

{\displaystyle 1\cdot 10^{3}+2\cdot 10^{2}+3\cdot 10^{1}+4\cdot 10^{0}+5\cdot 10^{-1}+6\cdot 10^{-2}=1234{,}56}
{\displaystyle {\frac {1}{3}}=0{,}3333\dotso =0{,}{\overline {3}}.}
  • D Basis {\displaystyle b} muess nit umbedingt e natürligi Zaal si. Es isch bewiise worde, ass alli komplexe Zaale mit eme Betraag gröösser as 1 as Basis vom ene Stellewärtsüsteem chönne verwändet wärde. Au Zaalesüsteam mit gmischte Base si mööglig. Bischbil doodrfür findet mö in Knuth: The Art of Computer Programming.
  • En anderi Daarstellig für razionali und irrazionali Zaale isch dr Chettibruch, wo mä mit em besseri Approximazione ünerchunnt as mit de Stellewärtsüsteem.
  • Georges Ifrah: Universalgeschichte der Zahlen. 2. Auflage. Campus-Verlag, Frankfurt/Main 1987, ISBN 3-593-33666-9.
  • John D. Barrow: Warum die Welt mathematisch ist. Campus-Verlag, Frankfurt/Main 1993, ISBN 3-593-34956-6.
Dä Artikel basiert uff ere fräie Übersetzig vum Artikel „Zahlensystem“ vu de dütsche Wikipedia. E Liste vu de Autore un Versione isch do z finde.