Fünfeck – Wikipedia
![Regelmäßiges Fünfeck](https://upload.wikimedia.org/wikipedia/commons/thumb/5/57/01-F%C3%BCnfeck_simple.svg/290px-01-F%C3%BCnfeck_simple.svg.png)
Ein Fünfeck, auch Pentagon (von altgriechisch πεντάγωνος pentágōnos, deutsch ‚fünfeckig‘),[1] ist eine geometrische Figur. Es gehört zur Gruppe der Vielecke (Polygone) und ist durch fünf Punkte definiert. Sind alle fünf Seiten gleich lang, spricht man von einem gleichseitigen Fünfeck. Sind darüber hinaus alle Winkel an den fünf Ecken gleich groß, dann wird das Fünfeck regulär oder regelmäßig genannt.
Fünfecke können, wie alle Polygone, welche keine Dreiecke sind, unterteilt werden in:
- Es gibt nur einen regelmäßigen Fünfstrahlstern, das Pentagramm. Da es mit einem geschlossenen Polygonzug gezeichnet werden kann, ist es auch ein sogenanntes Sternpolygon mit dem Schläfli-Symbol
.
Die Summe der Innenwinkel eines regelmäßigen Fünfecks beträgt 540°, also 3 mal 180°, und ergibt sich aus einer allgemeinen Formel für Polygone, in der für die Variable die Anzahl der Eckpunkte des Polygons eingesetzt werden muss (in diesem Fall
):
Ein ebenes Fünfeck besitzt einen eindeutig bestimmbaren Flächeninhalt, welcher sich stets durch Zerlegen in Dreiecke berechnen lässt.
Mathematische Formeln zum regelmäßigen Fünfeck | ||
---|---|---|
Innenwinkel |
|
![]() |
Zentriwinkel |
| |
Höhe | ||
Seitenlänge |
| |
Umkreisradius |
| |
Inkreisradius |
| |
Länge der Diagonalen |
| |
Flächeninhalt |
![](https://upload.wikimedia.org/wikipedia/commons/thumb/e/ee/01_F%C3%BCnfeck-Berechnung-5.svg/290px-01_F%C3%BCnfeck-Berechnung-5.svg.png)
Innenwinkels
Der Winkel, den zwei benachbarte Seiten im ebenen, regelmäßigen Fünfeck miteinander einschließen, beträgt (wiederum nach einer allgemeinen Formel für regelmäßige Polygone):
oder auch
Der Zentriwinkel oder Mittelpunktswinkel wird von zwei benachbarten Umkreisradien
eingeschlossen. In der allgemeinen Formel ist für die Variable
die Zahl
einzusetzen.
oder auch
![](https://upload.wikimedia.org/wikipedia/commons/thumb/2/21/01_F%C3%BCnfeck-Berechnung-3.svg/290px-01_F%C3%BCnfeck-Berechnung-3.svg.png)
Das Fünfeck wird in 5 kongruente Dreiecke zerlegt. Nimmt man die Hälfte eines solchen Dreiecks, also ein rechtwinkliges Dreieck mit den Seiten
, Umkreisradius
, Inkreisradius
sowie den halben Zentriwinkel
, so gilt
,
daraus folgt
.
Löst man nach auf, so erhält man
.
Verwendet man für die Sinus-Werte deren Quadratwurzeln, so gilt auch
.
.
Auch der Inkreisradius lässt sich mithilfe eines halbierten Bestimmungsdreiecks, sprich mit dem rechtwinkligen Dreieck
, ermitteln. Es ergibt sich
,
daraus folgt
.
Wegen
und der Quadratwurzel des Sinuswertes
,
eingesetzt in
,
gilt auch
.
![](https://upload.wikimedia.org/wikipedia/commons/thumb/6/66/01_F%C3%BCnfeck-Berechnung.svg/290px-01_F%C3%BCnfeck-Berechnung.svg.png)
Im nebenstehenden Bild ist eine von vier möglichen Diagonalen eingezeichnet. Die Diagonale lässt sich aus dem Hilfsdreieck bestimmen. Es ergibt sich
,
daraus folgt
.
Verwendet man die Quadratwurzel des Sinus-Wertes
so gilt auch
.
Der Flächeninhalt A eines regelmäßigen Fünfecks der Seitenlänge ist das Fünffache des Flächeninhalts eines von seinem Mittelpunkt und zwei seiner Eckpunkte aufgespannten Dreiecks
.
Verwendet man für den Tangens-Wert dessen Quadratwurzel (analog Inkreisradius)
,
so gilt auch
.
Allgemein mit dem Umkreisradius ru
oder auch
Regelmäßiges Fünfeck und Pentagramm bilden eine Grundfigur, in der das Verhältnis des Goldenen Schnittes wiederholt auftritt. Die Seite des Fünfecks befindet sich im goldenen Verhältnis zu seinen Diagonalen. Die Diagonalen untereinander teilen sich wiederum im goldenen Verhältnis, d. h. AD verhält sich zu BD wie BD zu CD.[2]
Der Beweis nutzt die Ähnlichkeit gewählter Dreiecke.
![](https://upload.wikimedia.org/wikipedia/commons/thumb/a/a0/Goldener_Schnitt_Fuenfeck_1.svg/222px-Goldener_Schnitt_Fuenfeck_1.svg.png)
![](https://upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Konstruktion-F%C3%BCnfeck.svg/290px-Konstruktion-F%C3%BCnfeck.svg.png)
Für das regelmäßige Fünfeck existiert eine mathematisch exakte Konstruktion zur Bestimmung der Seitenlänge (siehe Abbildung).
- Zeichne einen Kreis (späterer Umkreis, blau) mit Radius r um den Mittelpunkt M.
- Zeichne zwei zueinander senkrechte Durchmesser (rot) ein.
- Halbiere einen Radius (magenta, Punkt D).
- Zeichne einen Kreis (grün) mit dem Radius |DE| um Punkt D. Er schneidet die Gerade AM im Punkt F. Die Strecke EF ist die Länge der Seite.
- Zum Abtragen auf dem Umkreis einen weiteren Kreisbogen (orange) mit Radius |EF| um E zeichnen. Er schneidet den ersten Kreis (blau) in G. Vorgang entsprechend wiederholen.
Berechnung zur Konstruktion:
- Umformen des Faktors:
Das entspricht genau dem Faktor in der obigen Formel für die Seitenlänge.
Die Seiten des nicht eingezeichneten Dreiecks MFE entsprechen exakt den Seitenlängen des regelmäßigen Sechsecks (ME), des regelmäßigen Fünfecks (EF) und des regelmäßigen Zehnecks (FM) mit dem gegebenen Umkreisradius r.
![](https://upload.wikimedia.org/wikipedia/commons/thumb/7/70/01_Pentagon-Euklid-1.svg/290px-01_Pentagon-Euklid-1.svg.png)
Die Dreiecke FGD und ACD sind Goldene Dreiecke erster Art.
Die im Folgenden beschriebene Konstruktion (Bild) vom regelmäßigen Fünfeck stammt von Euklid (3. Jh. v. Chr.). Sie benötigt vergleichsweise etwas mehr Aufwand, denn Euklids Ansatz dazu war das Goldene Dreieck erster Art.[3] Zur leichteren Nachvollziehbarkeit wurden in der Darstellung die gleichen Bezeichnungen der Punkte, wie die in den Bildern der Stoicheia (Euklids Elemente) verwendet.
- Zeichne einen Kreis (den späteren Umkreis) mit beliebigem Radius um den Mittelpunkt F.
- Trage den Durchmesser |AG| ein.
Nun folgt die Konstruktion des Goldenen Dreiecks, platzsparend mit der Methode Innere Teilung nach Heron von Alexandria.
- Halbiere den Radius |FG| im Punkt I.
- Errichte eine Senkrechte zum Radius |FG| im Punkt G und bestimme darauf den Punkt J mit |GJ| = |IG|.
- Verbinde den Punkt F mit J.
- Ziehe zuerst den Bogen JGK und anschließend den Bogen FLK, somit teilt L den Radius |FG| im Verhältnis des Goldenen Schnitts.
- Bestimme den Punkt D mit |GD| = |FL|, das Goldene Dreieck FGD ist somit bestimmt.
- Bestimme den Punkt C mit |GC| = |GD|, dies ergibt die erste Seitenlänge |CD|.
- Trage die Seitenlänge |CD| einmal ab dem Punkt C und einmal ab dem Punkt D auf den Umkreis ab.
- Verbinde die Punkte D-E-A-B-C, damit ist das regelmäßige Fünfeck fertiggestellt.
Mit Anwendung des Goldenen Schnitts, äußere Teilung
![](https://upload.wikimedia.org/wikipedia/commons/thumb/c/c0/01-F%C3%BCnfeck-Seite-vorgegeben-wiki.svg/290px-01-F%C3%BCnfeck-Seite-vorgegeben-wiki.svg.png)
- Zeichne eine Strecke AB, welche die Länge der vorgegebenen Seite des Fünfecks hat.
- Verlängere die Strecke ab dem Punkt A um ca. drei Viertel der Strecke AB.
- Zeichne einen Kreisbogen um den Punkt B mit dem Radius |AB|.
- Zeichne einen Kreisbogen um den Punkt A mit dem Radius |AB|, es ergibt sich der Schnittpunkt F.
- Fälle ein Lot von Punkt F auf die Strecke AB mit Fußpunkt G.
- Zeichne eine Parallele zur Strecke FG ab dem Punkt A bis über den Kreisbogen um Punkt A, es ergibt sich der Schnittpunkt H.
- Zeichne einen Kreisbogen um den Punkt G mit dem Radius |GH| bis zur Verlängerung der Strecke AB, es ergibt sich der Schnittpunkt J.
- Zeichne einen Kreisbogen um den Punkt B mit dem Radius |BJ| bis über die Senkrechte, die durch den Punkt F geht, es ergeben sich die Schnittpunkte D auf der Senkrechten und E mit dem Kreisbogen um Punkt A.
- Zeichne einen Kreisbogen um den Punkt D mit dem Radius |BA|, bis er den Kreisbogen um Punkt B schneidet, es ergibt sich der Schnittpunkt C.
- Verbinde die Punkte B-C-D-E-A, somit ergibt sich das regelmäßige Fünfeck.
Wie in der Konstruktion bei gegebenem Umkreis, ist auch hier der Goldene Schnitt der maßgebende Baustein.
Für den Vergleich der Konstruktionsvarianten sind die Punktebezeichnungen mit Indizes ergänzt: u für die Konstruktion mit gegebenem Umkreis, s für die Konstruktion mit gegebener Seitenlänge.
- Seite des Fünfecks:
- Radius für den Goldenen Schnitt:
- Streckenverhältnisse des Goldenen Schnitts:
Durch Zusammenziehen eines aus einem Papierstreifen geschlungenen Überhandknotens nimmt dieser die Form eines regulären Fünfecks an.
![](https://upload.wikimedia.org/wikipedia/commons/thumb/c/c3/Knot.jpg/220px-Knot.jpg)
-
Bild 4
Falten der ersten Faltlinie -
Bild 5
Falten der zweiten Faltlinie -
Bild 6
Falten der dritten und letzten Faltlinie, Streifenende
zwischen dem Streifenende
und dem Trapez
durchgezogen
Das Dodekaeder ist der einzige der platonischen Körper, der regelmäßige Fünfecke als Seitenflächen hat. Auch einige archimedische Körper enthalten regelmäßige Fünfecke, nämlich das Ikosidodekaeder, der Ikosaederstumpf, das Rhombenikosidodekaeder und das abgeschrägte Dodekaeder.
-
Dodekaeder
-
Ikosidodekaeder
-
Ikosaederstumpf (Fußballkörper)
-
Rhombenikosidodekaeder
-
Abgeschrägtes Dodekaeder
Sowohl die Okra als auch die Sternfrucht hat im Querschnitt die Form eines Fünfecks. Die Blüten der Prunkwinde sind ebenfalls fünfeckig ausgebildet. Auch Seesterne und Schlangensterne weisen eine fünfstrahlige Symmetrie auf. Näherungsweise trifft dies auch für die Blätter des Amerikanischen Amberbaums zu. Viele cyclische Verbindungen enthalten eine Fünfringstruktur (etwa Cyclopentan, γ-Butyrolacton, Furan, Furanosen etc.).
-
Okrafrüchte
-
Coccolithophore von Braarudosphaera bigelowii bestehen aus 12 Kalkschuppen mit einer fünfeckigen Grundfläche („Pentalithen“)
-
Aufgeschnittene Sternfrucht
-
Blattformen des Amerikanischen Amberbaums (Herbstfärbung)
Der Grundriss einer neuzeitlichen bastionierten Festung hat häufig die Form eines Fünfecks. So sind regelmäßige Fünfecke die vollständig wieder aufgebaute Festung Bourtange in den Niederlanden sowie Nyenschanz (heute in St. Petersburg), die Zitadelle von Jaca, die Zitadelle von Pamplona, die Festung Dömitz, die Zitadelle von Turin, die Zitadelle von ’s-Hertogenbosch, die Zitadelle von Straßburg, die Zitadelle von Amiens, die 1598 abgebrochene Zitadelle von Vitry-le-François von Girolamo Marini, die verschwundene Zitadelle von Antwerpen, die Zitadelle von Doullens (Picardie, nur in Teilen auf regelmäßigem Grundriss), die Zitadelle von Lille, das Harburger Schloss, die Zitadelle Vechta, die Zitadelle von Münster, das Fort Nieuw-Amsterdam, das Kastell von Kopenhagen, Tilbury Fort in Essex östlich von London, die Festung auf der Insel Poel in Mecklenburg, die Höhenfestung Wülzburg bei Weißenburg in Bayern und die Festung Goryōkaku in Japan. Die Stadt Sathmar im heutigen Rumänien besaß eine fünfeckige Festung.
Den Typ des befestigten Palasts (Palazzo in fortezza) auf regelmäßig fünfeckigem Grundriss verkörpern die Villa Farnese in Caprarola (Provinz Viterbo, Italien), die Schlösser Krzyżtopór und Nowy Wiśnicz sowie die Befestigungen von Schloss Łańcut in Polen.
Der Hauptsitz des Verteidigungsministeriums der Vereinigten Staaten in Washington, D.C. wird wegen seines Grundrisses in Form des regelmäßigen Fünfecks Pentagon genannt.
Jeweils ein Fünfeck liegt Kirchengebäuden wie der Corvinuskirche in Hannover, der Dietrich-Bonhoeffer-Kirche (Köln-Lindenthal), der Kirche St. Michael in Detmold (Westfalen), der Kirche St. Markus in Recklinghausen, der Kirche Mariä Himmelfahrt (Irlbach) oder der Wallfahrtskirche Zelená Hora in der Tschechischen Republik zugrunde.
Auf fünfeckigem Querschnitt erheben sich Turmbauten wie der stählerne Verkehrsturm am Potsdamer Platz, der ehemalige Marinesignalturm Kiel, der aus Holz gefertigte Aussichtsturm auf der Hohenmirsberger Platte oder das Siegesdenkmal in Bangkok.
Der Fünfeckige Stein ist ein Grenzstein in Niederösterreich.
-
Festung auf der Insel Poel
-
Satellitenaufnahme des Pentagons
![](https://upload.wikimedia.org/wikipedia/commons/thumb/0/05/Fotothek_df_tg_0003413_Geometrie_%5E_Konstruktion_%5E_Dreieck_%5E_Vieleck.jpg/220px-Fotothek_df_tg_0003413_Geometrie_%5E_Konstruktion_%5E_Dreieck_%5E_Vieleck.jpg)
Jacques Ozanam fertigte im Jahr 1699 einen Kupferstich an, in dem er u. a. die Konstruktion eines Fünfeck zeigt, das ein gegebenes gleichseitiges Dreieck umschließt.
Ozanams Ansatz zur Konstruktion des Fünfecks
Der halbe Innenwinkel eines regelmäßigen Fünfecks beträgt . Subtrahiert man von diesem den halben Innenwinkel
des gleichseitigen Dreiecks (Bild 2), ergibt sich der Winkel
zwischen dem Schenkel des Dreiecks und der Seite des Fünfecks.
Die Winkel ,
und
haben den gemeinsamen Teiler
. Dies bedeutet, der halbe Innenwinkel
des Fünfecks setzt sich aus
gleichen Teilen zu je
zusammen. Daraus folgt: Auf den halben Innenwinkel
des Dreiecks entfallen
bzw. auf den Winkel
zwischen dem Schenkel des Dreiecks und der Seite des Fünfecks entfallen
solcher Teile.
Vorgehensweise
Ausgehend vom gleichseitigen Dreieck (Bild 2), zeichnet man zuerst dessen Höhe
ein und schlägt anschließend einen Kreisbogen um den Punkt
mit einem Radius etwas kleiner, als die halbe Höhe
; die Schnittpunkte sind
,
(Teilungspunkt
) und
.
Es folgt (Bild 1) die – von Jacques Ozanam nicht dargestellte – Konstruktion des Teilungspunktes für den Winkel
. Nach dem Verlängern der Strecke
über
hinaus, dem Ziehen einer Geraden durch
, parallel zu
, wird der Kreisbogen
zu einem Kreis um
ergänzt; Schnittpunkte sind
und
. Anschließend halbiert man den Radius
in
und zieht einen Kreis um
mit Radius
; Schnittpunkt ist
. Der Kreis um
mit Radius
liefert den Teilungspunkt
sowie den gesuchten Winkel
mithilfe des Zentriwinkels
bzw. der Seitenlänge
eines regelmäßigen Fünfecks. Die Teilungspunkte
(mittels der Winkelhalbierenden
) und
sind für die Lösung nicht erforderlich, sie dienen lediglich der Verdeutlichung.
Es geht weiter (Bild 2) mit dem Eintragen des Teilungspunktes mithilfe eines (nicht eingezeichneten) Kreisbogens um Punkt
mit Radius
und dem Ziehen des Kreisbogens um
mit Radius
, bis er den Kreisbogen um
in
schneidet; dabei ergibt sich der Winkel
. Der Punkt
wird mithilfe der Sehne
ab
markiert. Mit dem nächsten Kreisbogen um
mit Radius
wird der Schnittpunkt
bestimmt. Das Übertragen des Winkels
mithilfe der Sehne
auf den Kreisbogen um
ab
schließt sich an; Schnittpunkt ist
. Eine Halbgerade ab
durch
und eine zweite ab
durch
schneiden sich im Eckpunkt
des entstehenden Fünfecks. Auf die gleiche Art und Weise – spiegelbildlich zur Höhe
– ergibt sich der Eckpunkt
. Mithilfe der Mittelsenkrechten der Strecke
erhält man den Mittelpunkt des Umkreises für das Fünfeck. Nach dem Ziehen des Umkreises werden die Strecken
und
bis zum Umkreis verlängert; dabei werden die beiden letzten Eckpunkte
bzw.
des Fünfecks generiert. Die abschließende Verbindung des Eckpunktes
mit
vollendet das gesuchte Fünfeck.
- Fünfeck nach dem Satz von Mascheroni, allein mit einem Zirkel erstellt
- Parkettierung mit Fünfecken
- Goldener Schnitt
Wiktionary: Fünfeck – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen
- ↑ Wilhelm Pape, Max Sengebusch (Bearb.): Handwörterbuch der griechischen Sprache. 3. Auflage, 6. Abdruck. Vieweg & Sohn, Braunschweig 1914 (zeno.org [abgerufen am 2. Juli 2024]).
- ↑ C. Stanley Ogilvy: Unterhaltsame Geometrie. Kapitel 9: Der Goldene Schnitt – 9.1 Das Pentagramm. Vieweg+Teubner Verlag, Wiesbaden 1984, ISBN 3-528-28314-9, S. 76–77, doi:10.1007/978-3-663-00104-1_10.
- ↑ Euklid, Übersetzer:Rudolf Haller: Stoicheia (Euklids Elemente). IV.11. In einen Kreis ein gleichseitiges und gleichwinkliges Fünfeck einbeschreiben. Markgröningen 2017 (opera-platonis.de [PDF; abgerufen am 12. Juli 2024]).