Rohrreibungszahl – Wikipedia
Physikalische Kennzahl | ||||||||
---|---|---|---|---|---|---|---|---|
Name | Rohrreibungszahl | |||||||
Formelzeichen | ||||||||
Dimension | dimensionslos | |||||||
Definition | ||||||||
| ||||||||
Anwendungsbereich | Rohrströmungen |

Die Rohrreibungszahl (auch Rohrreibungsbeiwert) λ (Lambda) ist eine dimensionslose Kennzahl zur Berechnung des Druckabfalls einer Strömung aufgrund des Strömungswiderstands in einem geraden Rohr. Siehe auch: Strömung in Rohrleitungen
Der Druckverlust ist bei gegebener (eventuell komplizierter) Geometrie und turbulenter Strömung näherungsweise proportional zur kinetischen Energiedichte. Das wird mit dem Druckverlustbeiwert ζ (Zeta) berücksichtigt:
Darin ist die Dichte des Mediums und
die mittlere Strömungsgeschwindigkeit.
Für lange, gerade Rohre liegt es nahe, auch den Einfluss der Länge und des Durchmessers
explizit zu berücksichtigen:
Für weniger lange Rohre gilt das nur näherungsweise, bzw. genügend weit hinter dem Eintritt differenziell:
Für die laminare, voll ausgebildete Strömung in einem kreisrunden Rohr bestimmt sich die Rohrreibungszahl nach dem Gesetz von Hagen-Poiseuille zu:
mit der Reynolds-Zahl (Re < 2300)
Bei turbulenter Strömung gibt es zur Bestimmung der Rohrreibungszahl mehrere Näherungsformeln, die je nach Rauheit des Rohrs angewendet werden:
- Über die Lambertsche W-Funktion lässt sich auch eine explizite Formulierung angeben:
- Eine häufig verwendete einfache Korrelation zur näherungsweisen Berechnung des Druckverlustverhaltens des glatten Rohres im Bereich
ist die nach Blasius[2]
- Hydraulisch raues Rohr, d. h. die Unebenheiten der Wand des Rohres werden nicht mehr von einer viskosen Unterschicht umhüllt. Der Wert von
errechnet sich mit der Formel von Nikuradse:
- mit der äquivalenten Sandrauigkeit
in mm
- Diese Formel kann näherungsweise auch für den hydraulisch glatten Bereich
und den hydraulisch rauen Bereich
genutzt werden.
- Die Grenze zwischen Übergangs- und rauem Bereich verläuft nach Moody[3] bei
.
Die nachstehende Tabelle enthält Beispiele für absolute Rauheiten.[4][5][6]
Werkstoff und Rohrart | Zustand der Rohre | |
---|---|---|
absolut glattes Rohr | theoretisch | 0 |
neuer Gummidruckschlauch | technisch glatt | ca. 0,0016 |
Rohre aus Kupfer, Leichtmetall, Glas | technisch glatt | 0,001 … 0,0015 |
Kunststoff | neu | 0,0015 … 0,007 |
Rohr aus Gusseisen | neu | 0,25 … 0,5 |
angerostet | 1,0 … 1,5 | |
verkrustet | 1,5 … 3,0 | |
Stahlrohre | gleichmäßige Rostnarben | ca. 0,15 |
neu, mit Walzhaut | 0,02 … 0,06 | |
leichte Verkrustung | 0,15 … 0,4 | |
starke Verkrustung | 2,0 … 4,0 | |
Betonrohre | neu, Glattstrich | 0,3 … 0,8 |
neu, rau | 2,0 … 3,0 | |
nach mehrjährigem Betrieb mit Wasser | 0,2 … 0,3 | |
Asbest-Zementrohre | neu | 0,03 … 0,1 |
Steinzeugrohre | neu, mit Muffen und Stößen | 0,02 … 0,25 |
Tonrohre | neu, gebrannt | 0,6 … 0,8 |
Um verschiedene Rauheiten zu vergleichen, kann man die äquivalente Sandrauigkeit verwenden.
Die Verlustbeiwerte können berechnet oder aus Tabellen bzw. Diagrammen entnommen werden.
In Entsprechung der Berechnung der Verlustbeiwerte für vollgefüllte Rohre können Verlustbeiwerte auch für teilgefüllte Rohre bzw. beliebige Gerinnequerschnitte ermittelt werden. Dabei wird in der Berechnung statt des Rohrinnendurchmessers der hydraulische Durchmesser
verwendet:
mit
- der Querschnittsfläche
- dem benetzten Umfang
.
Die Anwendung der Rohrreibungszahl hat sich für die Berechnung des Abflusses in offenen Gerinnen bisher nicht durchgesetzt und wird nur zur Berechnung des Abflusses in Rohren angewendet. Zur Berechnung des Abflusses in offenen Gerinnen wird zumeist auf die empirisch gewonnene Fließformel nach Strickler[7] (im englischen Sprachraum nach Manning),[8] zurückgegriffen.
- ↑ Wolfgang Kalide: Einführung in die technische Strömungslehre. 7., durchgesehene Auflage. Hanser, München/Wien 1990, ISBN 3-446-15892-8, S. 58.
- ↑ Rolf Herz: Grundlagen der Rohrleitungs- und Apparatetechnik. Vulkan-Verlag, 2004, S. 180 (eingeschränkte Vorschau in der Google-Buchsuche).
- ↑ Lewis F. Moody, Professor für Hydraulic Engineering, Princeton University: “Friction Factors for Pipe Flow” Trans. ASME, vol. 66, 1944.
- ↑ Wolfgang Kalide: Einführung in die technische Strömungslehre. 7., durchgesehene Auflage. Hanser, München/Wien 1990, ISBN 3-446-15892-8, S. 237.
- ↑ Walter Wagner: Strömung und Druckverlust: mit Beispielsammlung. 5., überarb. Auflage. Vogel, Würzburg 2001, ISBN 3-8023-1879-X, S. 79.
- ↑ Buderus Heiztechnik (Hrsg.): Handbuch für Heizungstechnik. Arbeitshilfe für die tägliche Praxis. 34. Auflage. Beuth, Berlin/Wien/Zürich 2002, ISBN 3-410-15283-0, S. 696.
- ↑ Sektionschef des Eidgenössischen Amtes für Wasserwirtschaft, Albert Strickler (1887 - 1963) Beiträge zur Frage der Geschwindigkeitsformel und der Rauhigkeitszahl für Ströme, Kanäle und geschlossene Leitungen. Mitteilungen des Eidg. Amtes für Wasserwirtschaft, Bern, 1923.
- ↑ antiquiert auch Philipe Gaspard Gauckler (1826–1905) bezeichnet