link.springer.com

Entry of Influenza Virus

  • Lamb RA, Krug RM. Orthomyxoviridae: The viruses and their replication. In: Knipe DM, Howley PM, eds. Fields Virology. Philadelphia: Lippincott Williams and Wilkins, 2001:1487–1531.

    Google Scholar 

  • Skehel JJ, Wiley DC. Receptor binding and membrane fusion in virus entry: The influenza hemagglutinin. Annu Rev Biochem 2000; 69:531–569.

    Article  PubMed  CAS  Google Scholar 

  • Connor RJ, Kawaoka Y, Webster RG et al. Receptor specificity in human, avian, and equine H2 and H3 influenza virus isolates. Virology 1994; 205(1):17–23.

    Article  PubMed  CAS  Google Scholar 

  • Matrosovich MN, Gambaryan AS, Teneberg S et al. Avian influenza A viruses differ from human viruses by recognition of sialyloligosaccharides and gangliosides and by a higher conservation of the HA receptor-binding site. Virology 1997; 233(1):224–234.

    Article  PubMed  CAS  Google Scholar 

  • Rogers GN, D’souza BL. Receptor binding properties of human and animal H1 influenza virus isolates. Virology 1989; 173(1):317–322.

    Article  PubMed  CAS  Google Scholar 

  • Carroll SM, Higa HH, Paulson JC. Different cell-surface receptor determinants of antigenically similar influenza virus hemagglutinins. J Biol Chem 1981; 256(16):8357–8363.

    PubMed  CAS  Google Scholar 

  • Martin J, Wharton SA, Lin YP et al. Studies of the binding properties of influenza hemagglutinin receptor-site mutants. Virology 1998; 241(1): 101–111.

    Article  PubMed  CAS  Google Scholar 

  • Sauter NK, Glick GD, Crowther RL et al. Crystallographic detection of a second ligand binding site in influenza virus hemagglutinin. Proc Natl Acad Sci USA 1992; 89(1):324–328.

    Article  PubMed  CAS  Google Scholar 

  • Wilson IA, Skehel JJ, Wiley DC. Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 A resolution. Nature 1981; 289(5796):366–373.

    Article  PubMed  CAS  Google Scholar 

  • Fouchier RA, Munster V, Wallensten A et al. Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls. J Virol 2005; 79(5):2814–2822.

    Article  PubMed  CAS  Google Scholar 

  • Webster RG, Bean WJ, Gorman OT et al. Evolution and ecology of influenza virus. Microbiol Rev 1992; 56:152–179.

    PubMed  CAS  Google Scholar 

  • Claas EC, Osterhaus AD, van Beek R et al. Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus. Lancet 1998; 351(9101):472–477.

    Article  PubMed  CAS  Google Scholar 

  • Koopmans M, Wilbrink B, Conyn M et al. Transmission of H7N7 avian influenza A virus to human beings during a large outbreak in commercial poultry farms in the Netherlands. Lancet 2004; 363(9409): 587–593.

    Article  PubMed  Google Scholar 

  • Lin YP, Shaw M, Gregory V et al. Avian-to-human transmission of H9N2 subtype influenza A viruses: Relationship between H9N2 and H5N1 human isolates. Proc Natl Acad Sci USA 2000;97(17):9654–9658.

    Article  PubMed  CAS  Google Scholar 

  • Baum LG, Paulson JC. Sialyloligosaccharides of the respiratory epithelium in the selection of human influenza virus receptor specificity. Acta Histochem Suppl 1990; 40:35–38.

    PubMed  CAS  Google Scholar 

  • Ito T, Suzuki Y, Suzuki T et al. Recognition of N-glycolylneuraminic acid linked to galactose by the alpha2,3 linkage is associated with intestinal replication of influenza A virus in ducks. J Virol 2000; 74(19):9300–9305.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki Y, Ito T, Suzuki T et al. Sialic acid species as a determinant of the host range of influenza A viruses. J Virol 2000; 74(24):11825–11831.

    Article  PubMed  CAS  Google Scholar 

  • Matrosovich M, Zhou N, Kawaoka Y et al. The surface glycoproteins of H5 influenza viruses isolated from humans, chickens, and wild aquatic birds have distinguishable properties. J Virol 1999; 73(2):1146–1155.

    PubMed  CAS  Google Scholar 

  • Matrosovich MN, Matrosovich TY, Gray T et al. Human and avian influenza viruses target different cell types in cultures of human airway epithelium. Proc Natl Acad Sci USA 2004; 101(13):4620–4624.

    Article  PubMed  CAS  Google Scholar 

  • Shinya K, Ebina M, Yamada S et al. Avian flu: Influenza virus receptors in the human airway. Nature 2006; 440(7083):435–436.

    Article  PubMed  CAS  Google Scholar 

  • van Riel D, Munster VJ, de Wit E et al. H5N1 virus attachment to lower respiratory tract. Science 2006.

    Google Scholar 

  • Gamblin S J, Haire LF, Russell RJ et al. The structure and receptor binding properties of the 1918 influenza hemagglutinin. Science 2004; 303(5665): 1838–1842.

    Article  PubMed  CAS  Google Scholar 

  • Ha Y, Stevens DJ, Skehel JJ et al. X-ray structures of H5 avian and H9 swine influenza virus hemagglutinins bound to avian and human receptor analogs. Proc Natl Acad Sci USA 2001; 98(20):11181–11186.

    Article  PubMed  CAS  Google Scholar 

  • Ha Y, Stevens DJ, Skehel JJ et al. H5 avian and H9 swine influenza virus haemagglutinin structures: Possible origin of influenza subtypes. EMBO J 2002; 21(5):865–875.

    Article  PubMed  CAS  Google Scholar 

  • Nobusawa E, Aoyama T, Kato H et al. Comparison of complete amino acid sequences and receptor-binding properties among 13 serotypes ofhemagglutinins of influenza A viruses. Virology 1991; 182(2):475–485.

    Article  PubMed  CAS  Google Scholar 

  • Vines A, Wells K, Matrosovich M et al. The role of influenza A virus hemagglutinin residues 226 and 228 in receptor specificity and host range restriction. J Virol 1998; 72(9):7626–7631.

    PubMed  CAS  Google Scholar 

  • Glaser L, Stevens J, Zamarin D et al. A single amino acid substitution in 1918 influenza virus hemagglutinin changes receptor binding specificity. J Virol 2005; 79(17): 11533–11536.

    Article  PubMed  CAS  Google Scholar 

  • Stevens J, Blixt O, Tumpey TM et al. Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Science 2006.

    Google Scholar 

  • Ohuchi M, Ohuchi R, Feldmann A et al. Regulation of receptor binding affinity of influenza virus hemagglutinin by its carbohydrate moiety. J Virol 1997; 71(11):8377–8384.

    PubMed  CAS  Google Scholar 

  • Mir-Shekari SY, Ashford DA, Harvey DJ et al. The glycosylation of the influenza A virus hemagglutinin by mammalian cells. A site-specific study. J Biol Chem 1997; 272(7):4027–4036.

    Article  PubMed  CAS  Google Scholar 

  • Deom CM, Caton AJ, Schulze IT. Host cell-mediated selection of a mutant influenza A virus that has lost a complex oligosaccharide from the tip of the hemagglutinin. Proc Natl Acad Sci USA 1986; 83(11):3771–3775.

    Article  PubMed  CAS  Google Scholar 

  • Gambaryan AS, Marinina VP, Tuzikov AB et al. Effects of host-dependent glycosylation of hemagglutinin on receptor-binding properties on H1N1 human influenza A virus grown in MDCK cells and in embryonated eggs. Virology 1998; 247(2):170–177.

    Article  PubMed  CAS  Google Scholar 

  • Stray SJ, Cummings RD, Air GM. Influenza virus infection of desialylated cells. Glycobiology 2000; 10(7):649–658.

    Article  PubMed  CAS  Google Scholar 

  • Chu VC, Whittaker GR. Influenza virus entry and infection require host cell N-linked glycoprotein. Proc Natl Acad Sci USA 2004; 101(52): 18153–18158.

    Article  PubMed  CAS  Google Scholar 

  • Ablan S, Rawat SS, Blumenthal R et al. Entry of influenza virus into a glycosphingolipid-deficient mouse skin fibroblast cell line. Arch Virol 2001; 146(11):2227–2238.

    Article  PubMed  CAS  Google Scholar 

  • Matrosovich M, Suzuki T, Hirabayashi Y et al. Gangliosides are not essential for influenza virus infection. Glycoconj J 2006; 23(1–2):107–113.

    Article  PubMed  CAS  Google Scholar 

  • Paulson JC, Rogers GN. Resialylated erythrocytes for assessment of the specificity of sialyloligosaccharide binding proteins. Methods Enzymol 1987; 138:162–168.

    Article  PubMed  CAS  Google Scholar 

  • Stevens J, Blixt O, Glaser L et al. Glycan microarray analysis of the hemagglutinins from modern and pandemic influenza viruses reveals different receptor specificities. J Mol Biol 2006; 355(5):1143–1155.

    Article  PubMed  CAS  Google Scholar 

  • Dourmashkin RR, Tyrrell DA. Electron microscopic observations on the entry of influenza virus into susceptible cells. J Gen Virol 1974; 24(1):129–141.

    Article  PubMed  CAS  Google Scholar 

  • Matlin KS, Reggio H, Helenius A et al. Infectious entry pathway of influenza virus in a canine kidney cell line. J Cell Biol 1981; 91(3 Pt 1):601–613.

    Article  PubMed  CAS  Google Scholar 

  • Sieczkarski SB, Whittaker GR. Influenza virus can enter and infect cells in the absence of clathrin-mediated endocytosis. J Virol 2002; 76(20):10455–10464.

    Article  PubMed  CAS  Google Scholar 

  • Sun X, Yau VK, Briggs BJ et al. Role of clathrin-mediated endocytosis during vesicular stomatitis virus entry into host cells. Virology 2005; 338(1):53–60.

    Article  PubMed  CAS  Google Scholar 

  • Rust MJ, Lakadamyali M, Zhang F et al. Assembly of endocytic machinery around individual influenza viruses during viral entry. Nat Struct Mol Biol 2004; 11(6):567–573.

    Article  PubMed  CAS  Google Scholar 

  • Roy AM, Parker JS, Parrish CR et al. Early stages of influenza virus entry into Mv-1 lung cells: Involvement of dynamin. Virology 2000; 267(1):17–28.

    Article  PubMed  CAS  Google Scholar 

  • Hoekstra D, Klappe K. Fluorescence assays to monitor fusion of enveloped viruses. In: Duzgunes N, ed. Methods in Enzymology, Vol. 220: Membrane Fusion Techniques Part A. San Diego: Academic Press, 1993:261–276.

    Chapter  Google Scholar 

  • Lakadamyali M, Rust MJ, Babcock HP et al. Visualizing infection of individual influenza viruses. Proc Natl Acad Sci USA 2003; 100(16):9280–9285.

    Article  PubMed  CAS  Google Scholar 

  • Sakai T, Ohuchi M, Imai M et al. Dual wavelength imaging allows analysis of membrane fusion of influenza virus inside cells. J Virol 2006; 80(4):2013–2018.

    Article  PubMed  CAS  Google Scholar 

  • Sieczkarski SB, Whittaker GR. Differential requirements of Rab5 and Rab7 for endocytosis of influenza and other enveloped viruses. Traffic 2003; 4(5):333–343.

    Article  PubMed  CAS  Google Scholar 

  • Sieczkarski SB, Brown HA, Whittaker GR. The role of protein kinase C bII in influenza virus entry via late endosomes. J Virol 2003; 77:460–469.

    Article  PubMed  CAS  Google Scholar 

  • Khor R, McElroy LJ, Whittaker GR. The ubiquitin-vacuolar protein sorting system is selectively required during entry of influenza virus into host cells. Traffic 2003; 4(12):857–868.

    Article  PubMed  CAS  Google Scholar 

  • Lakadamyali M, Rust MJ, Zhuang X. Ligands for clathrin-mediated endocytosis are differentially sorted into distinct populations of early endosomes. Cell 2006; 124(5):997–1009.

    Article  PubMed  CAS  Google Scholar 

  • Gottlieb TA, Ivanov IE, Adesnik M et al. Actin microfilaments play a critical role in endocytosis at the apical but not the basolateral surface of polarized epithelial cells. J Cell Biol 1993; 120(3):695–710.

    Article  PubMed  CAS  Google Scholar 

  • Choppin PW. Multiplication of two kinds of influenza A2 virus particles in monkey kidney cells. Virology 1963; 21:342–352.

    Article  PubMed  CAS  Google Scholar 

  • Smirnov Yu A, Kuznetsova MA, Kaverin NV. The genetic aspects of influenza virus filamentous particle formation. Arch Virol 1991; 118(3–4):279–284.

    Article  PubMed  Google Scholar 

  • Sieczkarski SB, Whittaker GR. Characterization of the host cell entry of filamentous influenza virus. Arch Virol 2005; 150(9):1783–1796.

    Article  PubMed  CAS  Google Scholar 

  • Leikina E, Ramos C, Markovic I et al. Reversible stages of the low-pH-triggered conformational change in influenza virus hemagglutinin. EMBO J 2002; 21(21):5701–5710.

    Article  PubMed  CAS  Google Scholar 

  • Puri A, Booy FP, Doms RW et al. Conformational changes and fusion activity of influenza virus hemagglutinin of the H2 and H3 subtypes: Effects of acid pretreatment. J Virol 1990; 64(8):3824–3832.

    PubMed  CAS  Google Scholar 

  • Markovic I, Leikina E, Zhukovsky M et al. Synchronized activation and refolding of influenza hemagglutinin in multimeric fusion machines. J Cell Biol 2001; 155(5):833–844.

    Article  PubMed  CAS  Google Scholar 

  • Carr CM, Kim PS. A spring-loaded mechanism for the conformational change of influenzahemagglutinin. Cell 1993; 73(4):823–832.

    Article  PubMed  CAS  Google Scholar 

  • Colman PM, Lawrence MC. The structural biology of type I viral membrane fusion. Nat Rev Mol Cell Biol 2003; 4(4):309–319.

    Article  PubMed  CAS  Google Scholar 

  • Park HE, Gruenke JA, White JM. Leash in the groove mechanism of membrane fusion. Nat Struct Biol 2003; 10(12):1048–1053.

    Article  PubMed  CAS  Google Scholar 

  • Han X, Bushweller JH, Cafiso DS et al. Membrane structure and fusion-triggering conformational change of the fusion domain from influenza hemagglutinin. Nat Struct Biol 2001; 8(8):715–720.

    Article  PubMed  CAS  Google Scholar 

  • Hernandez LD, Hoffman LR, Wolfsberg TG et al. Virus-cell and cell-cell fusion. Ann Rev Cell Dev Biol 1996; 12:627–661.

    Article  CAS  Google Scholar 

  • Russell DG, Marsh M. Endocytosis in pathogen entry and replication. In: Marsh M, ed. Endocytosis. Oxford: Oxford University Press, 2001:247–280.

    Google Scholar 

  • Danieli T, Pelletier SL, Henis YI et al. Membrane fusion mediated by the influenza virus hemagglutinin requires the concerted action of at least three hemagglutinin trimers. J Cell Biol 1996; 133(3):559–569.

    Article  PubMed  CAS  Google Scholar 

  • Takeda M, Leser GP, Russell CJ et al. Influenza virus hemagglutinin concentrates in lipid raft microdomains for efficient viral fusion. Proc Natl Acad Sci USA 2003; 100(25):14610–14617.

    Article  PubMed  CAS  Google Scholar 

  • Sun X, Whittaker GR. Role for influenza virus envelope cholesterol in virus entry and infection. J Virol 2003;77(23):12543–12551.

    Article  PubMed  CAS  Google Scholar 

  • Bui M, Whittaker G, Helenius A. Effect of M1 protein and low pH on nuclear transport of influenza virus ribonucleoproteins. J Virol 1996; 70:8391–8401.

    PubMed  CAS  Google Scholar 

  • Martin K, Helenius A. Nuclear transport of influenza virus ribonucleoproteins: The viral matrix protein (M1) promotes export and inhibits import. Cell 1991; 67:117–130.

    Article  PubMed  CAS  Google Scholar 

  • Martin K, Helenius A. Transport of incoming influenza virus nucleocapsids into the nucleus. J Virol 1991; 65:232–244.

    PubMed  CAS  Google Scholar 

  • Pinto LH, Holsinger LJ, Lamb RA. Influenzavirus M2 protein has ion channel activity. Cell 1992; 69:517–528.

    Article  PubMed  CAS  Google Scholar 

  • Sugrue RJ, Hay AJ. Structural characteristics of the M2 protein of influenza A viruses: Evidence that it forms atetrameric channel. Virology 1991; 180:617–624.

    Article  PubMed  CAS  Google Scholar 

  • Bukrinskaya AG, Vorkounova NK, Kornilayeva GV et al. Influenza virus uncoating in infected cells and effect of rimantadine. J Gen Virol 1982; 60:49–59.

    Article  PubMed  CAS  Google Scholar 

  • Hay AJ, Wolstenholme AJ, Skehel JJ et al. The molecular basis of the specific anti-influenza action of amantadine. EMBO J 1985; 4:3021–3024.

    PubMed  CAS  Google Scholar 

  • Whittaker GR, Digard P. Entry and transport of influenza virus. In: Kawaoka Y, ed. Influenza Virology. Current Topics. Wymondham, UK: Caister Academic press, 2006:37–64.

    Google Scholar 

  • Cros JF, Garcia-Sastre A, Palese P. An unconventional NLS is critical forthe nuclear import of the influenza A virus nucleoprotein and ribonucleoprotein. Traffic 2005; 6(3):205–213.

    Article  PubMed  CAS  Google Scholar 

  • O’Neill RE, Jaskunas R, Blobel G et al. Nuclear import of influenza virus RNA can be mediated by viral nucleoprotein and transport factors required for protein import. J Biol Chem 1995; 270:22701–22704.

    Article  CAS  Google Scholar 

  • Kemler I, Whittaker G, Helenius A. Nuclear import of microinjected influenza virus ribonucleoproteins. Virology 1994; 202:1028–1033.

    Article  PubMed  CAS  Google Scholar 

  • Babcock HP, Chen C, Zhuang X. Using single-particle tracking to study nuclear trafficking of viral genes. Biophys J 2004; 87(4):2749–2758.

    Article  PubMed  CAS  Google Scholar 

  • Russell RJ, Gamblin SJ, Haire LF et al. H1 and H7 influenza haemagglutinin structures extend a structural classification of haemagglutinin subtypes. Virology 2004; 325(2):287–296.

    Article  PubMed  CAS  Google Scholar