link.springer.com

DNA Diagnostics and Exon Skipping

  • ️Sun Jan 01 2012
  • Lopez-Bigas N, Audit B, Ouzounis C et al (2005) Are splicing mutations the most frequent cause of hereditary disease? FEBS Lett 579:1900–1903

    Article  PubMed  CAS  Google Scholar 

  • Maxam AM, Gilbert W (1977) A new method for sequencing DNA. Proc Natl Acad Sci USA 74:560–564

    Article  PubMed  CAS  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Article  PubMed  CAS  Google Scholar 

  • Hyman ED (1988) A new method of sequencing DNA. Anal Biochem 174:423–436

    Article  PubMed  CAS  Google Scholar 

  • Brenner S, Johnson M, Bridgham J et al (2000) Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat Biotechnol 18:630–634

    Article  PubMed  CAS  Google Scholar 

  • Shendure J, Porreca GJ, Reppas NB et al (2005) Accurate multiplex polony sequencing of an evolved bacterial genome. Science 309:1728–1732

    Article  PubMed  CAS  Google Scholar 

  • Kasianowicz JJ, Brandin E, Branton D et al (1996) Characterization of individual polynucleotide molecules using a membrane channel. Proc Natl Acad Sci USA 93:13770–13773

    Article  PubMed  CAS  Google Scholar 

  • Dredge BK, Darnell RB (2003) Nova regulates GABA(A) receptor gamma2 alternative splicing via a distal downstream UCAU-rich intronic splicing enhancer. Mol Cell Biol 23:4687–4700

    Article  PubMed  CAS  Google Scholar 

  • Saenger W (1984) Principles of nucleic acid structure. Springer, New York

    Book  Google Scholar 

  • Grabowski PJ, Zaug AJ, Cech TR (1981) The intervening sequence of the ribosomal RNA precursor is converted to a circular RNA in isolated nuclei of Tetrahymena. Cell 23:467–476

    Article  PubMed  CAS  Google Scholar 

  • Yang E, van Nimwegen E, Zavolan M et al (2003) Decay rates of human mRNAs: correlation with functional characteristics and sequence attributes. Genome Res 13:1863–1872

    Article  PubMed  CAS  Google Scholar 

  • Blank A, Gallant JA, Burgess RR et al (1986) An RNA polymerase mutant with reduced accuracy of chain elongation. Biochemistry 25:5920–5928

    Article  PubMed  CAS  Google Scholar 

  • de Mercoyrol L, Corda Y, Job C et al (1992) Accuracy of wheat-germ RNA polymerase II. General enzymatic properties and effect of template conformational transition from right-handed B-DNA to left-handed Z-DNA. Eur J Biochem 206:49–58

    Article  PubMed  Google Scholar 

  • Tourriere H, Chebli K, Tazi J (2002) mRNA degradation machines in eukaryotic cells. Biochimie 84:821–837

    Article  PubMed  CAS  Google Scholar 

  • Fenger-Gron M, Fillman C, Norrild B et al (2005) Multiple processing body factors and the ARE binding protein TTP activate mRNA decapping. Mol Cell 20:905–915

    Article  PubMed  CAS  Google Scholar 

  • Xiang S, Cooper-Morgan A, Jiao X et al (2009) Structure and function of the 5′  ®  3′ exoribonuclease Rat1 and its activating partner Rai1. Nature 458:784–788

    Article  PubMed  CAS  Google Scholar 

  • Dziembowski A, Lorentzen E, Conti E et al (2007) A single subunit, Dis3, is essentially responsible for yeast exosome core activity. Nat Struct Mol Biol 14:15–22

    Article  PubMed  CAS  Google Scholar 

  • Schneider C, Leung E, Brown J et al (2009) The N-terminal PIN domain of the exosome subunit Rrp44 harbors endonuclease activity and tethers Rrp44 to the yeast core exosome. Nucleic Acids Res 37:1127–1140

    Article  PubMed  CAS  Google Scholar 

  • Allmang C, Petfalski E, Podtelejnikov A et al (1999) The yeast exosome and human PM-Scl are related complexes of 3′  →  5′ exonucleases. Genes Dev 13:2148–2158

    Article  PubMed  CAS  Google Scholar 

  • Jing Q, Huang S, Guth S et al (2005) Involvement of microRNA in AU-rich element-mediated mRNA instability. Cell 120:623–634

    Article  PubMed  CAS  Google Scholar 

  • Skruzny M, Schneider C, Racz A et al (2009) An endoribonuclease functionally linked to perinuclear mRNP quality control associates with the nuclear pore complexes. PLoS Biol 7:e8

    Article  PubMed  Google Scholar 

  • Liu J, Carmell MA, Rivas FV et al (2004) Argonaute2 is the catalytic engine of mammalian RNAi. Science 305:1437–1441

    Article  PubMed  CAS  Google Scholar 

  • Maquat LE (2005) Nonsense-mediated mRNA decay in mammals. J Cell Sci 118:1773–1776

    Article  PubMed  CAS  Google Scholar 

  • Le Hir H, Izaurralde E, Maquat LE et al (2000) The spliceosome deposits multiple proteins 20–24 nucleotides upstream of mRNA exon-exon junctions. EMBO J 19:6860–6869

    Article  PubMed  Google Scholar 

  • Vasudevan S, Peltz SW, Wilusz CJ (2002) Non-stop decay – a new mRNA surveillance pathway. Bioessays 24:785–788

    Article  PubMed  CAS  Google Scholar 

  • Doma MK, Parker R (2006) Endonucleolytic cleavage of eukaryotic mRNAs with stalls in translation elongation. Nature 440:561–564

    Article  PubMed  CAS  Google Scholar 

  • Clark F, Thanaraj TA (2002) Categorization and characterization of transcript-confirmed constitutively and alternatively spliced introns and exons from human. Hum Mol Genet 11:451–464

    Article  PubMed  CAS  Google Scholar 

  • Dietz HC, Valle D, Francomano CA et al (1993) The skipping of constitutive exons in vivo induced by nonsense mutations. Science 259:680–683

    Article  PubMed  CAS  Google Scholar 

  • Hentze MW, Kulozik AE (1999) A perfect message: RNA surveillance and nonsense-mediated decay. Cell 96:307–310

    Article  PubMed  CAS  Google Scholar 

  • Mendell JT, Dietz HC (2001) When the message goes awry: disease-producing mutations that influence mRNA content and performance. Cell 107:411–414

    Article  PubMed  CAS  Google Scholar 

  • Nilsen TW, Graveley BR (2010) Expansion of the eukaryotic proteome by alternative splicing. Nature 463:457–463

    Article  PubMed  CAS  Google Scholar 

  • Serra MJ, Turner DH (1995) Predicting thermodynamic properties of RNA. Methods Enzymol 259:242–261

    Article  PubMed  CAS  Google Scholar 

  • Zhuang Y, Weiner AM (1986) A compensatory base change in U1 snRNA suppresses a 5′ splice site mutation. Cell 46:827–835

    Article  PubMed  CAS  Google Scholar 

  • Seraphin B, Kretzner L, Rosbash M (1988) A U1 snRNA:pre-mRNA base pairing interaction is required early in yeast spliceosome assembly but does not uniquely define the 5′ cleavage site. EMBO J 7:2533–2538

    PubMed  CAS  Google Scholar 

  • Siliciano PG, Guthrie C (1988) 5′ splice site selection in yeast: genetic alterations in base-pairing with U1 reveal additional requirements. Genes Dev 2:1258–1267

    Article  PubMed  CAS  Google Scholar 

  • Freund M, Asang C, Kammler S et al (2003) A novel approach to describe a U1 snRNA binding site. Nucleic Acids Res 31:6963–6975

    Article  PubMed  CAS  Google Scholar 

  • McCullough AJ, Berget SM (1997) G triplets located throughout a class of small vertebrate introns enforce intron borders and regulate splice site selection. Mol Cell Biol 17:4562–4571

    PubMed  CAS  Google Scholar 

  • Del Gatto-Konczak F, Bourgeois CF, Le Guiner C et al (2000) The RNA-binding protein TIA-1 is a novel mammalian splicing regulator acting through intron sequences adjacent to a 5′ splice site. Mol Cell Biol 20:6287–6299

    Article  PubMed  Google Scholar 

  • Hicks MJ, Mueller WF, Shepard PJ et al (2010) Competing upstream 5′ splice sites enhance the rate of proximal splicing. Mol Cell Biol 30:1878–1886

    Article  PubMed  CAS  Google Scholar 

  • Zamore PD, Green MR (1989) Identification, purification, and biochemical characterization of U2 small nuclear ribonucleoprotein auxiliary factor. Proc Natl Acad Sci USA 86:9243–9247

    Article  PubMed  CAS  Google Scholar 

  • Reed R, Maniatis T (1988) The role of the mammalian branchpoint sequence in pre-mRNA splicing. Genes Dev 2:1268–1276

    Article  PubMed  CAS  Google Scholar 

  • Berglund JA, Chua K, Abovich N et al (1997) The splicing factor BBP interacts specifically with the pre-mRNA branchpoint sequence UACUAAC. Cell 89:781–787

    Article  PubMed  CAS  Google Scholar 

  • Liu HX, Zhang M, Krainer AR (1998) Identification of functional exonic splicing enhancer motifs recognized by individual SR proteins. Genes Dev 12:1998–2012

    Article  PubMed  CAS  Google Scholar 

  • Fairbrother WG, Yeh RF, Sharp PA et al (2002) Predictive identification of exonic splicing enhancers in human genes. Science 297:1007–1013

    Article  PubMed  CAS  Google Scholar 

  • Zhang XH, Chasin LA (2004) Computational definition of sequence motifs governing constitutive exon splicing. Genes Dev 18:1241–1250

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Rolish ME, Yeo G et al (2004) Systematic identification and analysis of exonic splicing silencers. Cell 119:831–845

    Article  PubMed  CAS  Google Scholar 

  • Del Gatto-Konczak F, Olive M, Gesnel MC et al (1999) hnRNP A1 recruited to an exon in vivo can function as an exon splicing silencer. Mol Cell Biol 19:251–260

    PubMed  Google Scholar 

  • Wagner EJ, Garcia-Blanco MA (2001) Polypyrimidine tract binding protein antagonizes exon definition. Mol Cell Biol 21:3281–3288

    Article  PubMed  CAS  Google Scholar 

  • Chen CD, Kobayashi R, Helfman DM (1999) Binding of hnRNP H to an exonic splicing silencer is involved in the regulation of alternative splicing of the rat beta-tropomyosin gene. Genes Dev 13:593–606

    Article  PubMed  CAS  Google Scholar 

  • Chastain M, Tinoco I Jr (1991) Structural elements in RNA. Prog Nucleic Acid Res Mol Biol 41:131–177

    Article  PubMed  CAS  Google Scholar 

  • Hermann T, Patel DJ (1999) Stitching together RNA tertiary architectures. J Mol Biol 294:829–849

    Article  PubMed  CAS  Google Scholar 

  • Hiller M, Zhang Z, Backofen R et al (2007) Pre-mRNA secondary structures influence exon recognition. PLoS Genet 3:e204

    Article  PubMed  Google Scholar 

  • Eperon LP, Graham IR, Griffiths AD et al (1988) Effects of RNA secondary structure on alternative splicing of pre-mRNA: is folding limited to a region behind the transcribing RNA polymerase? Cell 54:393–401

    Article  PubMed  CAS  Google Scholar 

  • de la Mata M, Alonso CR, Kadener S et al (2003) A slow RNA polymerase II affects alternative splicing in vivo. Mol Cell 12:525–532

    Article  PubMed  Google Scholar 

  • Lin S, Coutinho-Mansfield G, Wang D et al (2008) The splicing factor SC35 has an active role in transcriptional elongation. Nat Struct Mol Biol 15:819–826

    Article  PubMed  CAS  Google Scholar 

  • Champoux JJ (2001) DNA topoisomerases: structure, function, and mechanism. Annu Rev Biochem 70:369–413

    Article  PubMed  CAS  Google Scholar 

  • Rossi F, Labourier E, Forne T et al (1996) Specific phosphorylation of SR proteins by mammalian DNA topoisomerase I. Nature 381:80–82

    Article  PubMed  CAS  Google Scholar 

  • Adams MD, Kelley JM, Gocayne JD et al (1991) Complementary DNA sequencing: expressed sequence tags and human genome project. Science 252:1651–1656

    Article  PubMed  CAS  Google Scholar 

  • Johnson JM, Castle J, Garrett-Engele P et al (2003) Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science 302:2141–2144

    Article  PubMed  CAS  Google Scholar 

  • Blanchette M, Green RE, Brenner SE et al (2005) Global analysis of positive and negative pre-mRNA splicing regulators in Drosophila. Genes Dev 19:1306–1314

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    Article  PubMed  CAS  Google Scholar 

  • Wang ET, Sandberg R, Luo S et al (2008) Alternative isoform regulation in human tissue transcriptomes. Nature 456:470–476

    Article  PubMed  CAS  Google Scholar 

  • Metherell LA, Akker SA, Munroe PB et al (2001) Pseudoexon activation as a novel mechanism for disease resulting in atypical growth-hormone insensitivity. Am J Hum Genet 69:641–646

    Article  PubMed  CAS  Google Scholar 

  • Akker SA, Misra S, Aslam S et al (2007) Pre-spliceosomal binding of U1 small nuclear ribonucleoprotein (RNP) and heterogenous nuclear RNP E1 is associated with suppression of a growth hormone receptor pseudoexon. Mol Endocrinol 21:2529–2540

    Article  PubMed  CAS  Google Scholar 

  • Kornblihtt AR (2005) Promoter usage and alternative splicing. Curr Opin Cell Biol 17:262–268

    Article  PubMed  CAS  Google Scholar 

  • Brunak S, Engelbrecht J, Knudsen S (1991) Prediction of human mRNA donor and acceptor sites from the DNA sequence. J Mol Biol 220:49–65

    Article  PubMed  CAS  Google Scholar 

  • Vapnik V (1998) Statistical learning theory. Wiley-Interscience. ISBN 0-471-03003-1. New York

    Google Scholar 

  • Staden R (1984) Computer methods to locate signals in nucleic acid sequences. Nucleic Acids Res 12:505–519

    Article  PubMed  CAS  Google Scholar 

  • Shapiro MB, Senapathy P (1987) RNA splice junctions of different classes of eukaryotes: sequence statistics and functional implications in gene expression. Nucleic Acids Res 15:7155–7174

    Article  PubMed  CAS  Google Scholar 

  • Salzberg SL (1997) A method for identifying splice sites and translational start sites in eukaryotic mRNA. Comput Appl Biosci 13:365–376

    PubMed  CAS  Google Scholar 

  • Zhang MQ, Marr TG (1993) A weight array method for splicing signal analysis. Comput Appl Biosci 9:499–509

    PubMed  CAS  Google Scholar 

  • Burge C, Karlin S (1997) Prediction of complete gene structures in human genomic DNA. J Mol Biol 268:78–94

    Article  PubMed  CAS  Google Scholar 

  • Smith PJ, Zhang C, Wang J et al (2006) An increased specificity score matrix for the prediction of SF2/ASF-specific exonic splicing enhancers. Hum Mol Genet 15:2490–2508

    Article  PubMed  CAS  Google Scholar 

  • Cartegni L, Wang J, Zhu Z et al (2003) ESEfinder: a web resource to identify exonic splicing enhancers. Nucleic Acids Res 31:3568–3571

    Article  PubMed  CAS  Google Scholar 

  • Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    Article  PubMed  CAS  Google Scholar 

  • Eddy SR (2004) What is a hidden Markov model? Nat Biotechnol 22:1315–1316

    Article  PubMed  CAS  Google Scholar 

  • Yeo G, Burge CB (2004) Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. J Comput Biol 11:377–394

    Article  PubMed  CAS  Google Scholar