link.springer.com

Social Influence: From Contagion to a Richer Causal Understanding

  • ️Wed Oct 19 2016

References

  1. Ackland, R.: Web social science: Concepts, data and tools for social scientists in the digital age. Sage, London (2013)

    Google Scholar 

  2. Alshamsi, A., Pianesi, F., Lepri, B., Pentland, A., Rahwan, I.: Beyond contagion: Reality mining reveals complex patterns of social influence. PloS One 10(8), e0135740 (2015)

    Article  Google Scholar 

  3. Anagnostopoulos, A., Kumar, R., Mahdian, M.: Influence and correlation in social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 7–15. ACM (2008)

    Google Scholar 

  4. Aral, S., Muchnik, L., Sundararajan, A.: Distinguishing influence-based contagion from homophily-driven diffusion in dynamic networks. Proc. Nat. Acad. Sci. 106(51), 21544–21549 (2009)

    Article  Google Scholar 

  5. Aral, S., Walker, D.: Identifying influential and susceptible members of social networks. Science 337(6092), 337–341 (2012)

    Article  MathSciNet  Google Scholar 

  6. Bakshy, E., Hofman, J.M., Mason, W.A., Watts, D.J.: Everyone’s an influencer: quantifying influence on twitter. In: Proceedings of the fourth ACM international conference on Web search and data mining. pp. 65–74. ACM (2011)

    Google Scholar 

  7. Bakshy, E., Rosenn, I., Marlow, C., Adamic, L.: The role of social networks in information diffusion. In: Proceedings of the 21st International Conference on World Wide Web, pp. 519–528. ACM (2012)

    Google Scholar 

  8. Barbieri, N., Bonchi, F., Manco, G.: Influence-based network-oblivious community detection. In: 2013 IEEE 13th International Conference on Data Mining (ICDM), pp. 955–960. IEEE (2013)

    Google Scholar 

  9. Barnett, L., Barrett, A.B., Seth, A.K.: Granger causality and transfer entropy are equivalent for gaussian variables. Phys. Rev. Lett. 103(23), 238701 (2009)

    Article  Google Scholar 

  10. Berger, J.: Contagious: Why Things catch on. Simon and Schuster, New York (2013)

    Google Scholar 

  11. Borge-Holthoefer, J., Perra, N., Gonçalves, B., González-Bailón, S., Arenas, A., Moreno, Y., Vespignani, A.: The dynamics of information-driven coordination phenomena: A transfer entropy analysis. Sci. Adv. 2(4), e1501158 (2016)

    Article  Google Scholar 

  12. Cebrian, M., Rahwan, I., Pentland, A.S.: Beyond viral. Commun. ACM 59(4), 36–39 (2016)

    Article  Google Scholar 

  13. Centola, D., Macy, M.: Complex contagions and the weakness of long ties1. Am. J. Soc. 113(3), 702–734 (2007)

    Article  Google Scholar 

  14. Cha, M., Haddadi, H., Benevenuto, F., Gummadi, P.K.: Measuring user influence in twitter: The million follower fallacy. ICWSM 10, 10–17 (2010)

    Google Scholar 

  15. Cheng, J., Adamic, L., Dow, P.A., Kleinberg, J.M., Leskovec, J.: Can cascades be predicted? In: Proceedings of the 23rd International Conference on World Wide Web, pp. 925–936. International World Wide Web Conferences Steering Committee (2014)

    Google Scholar 

  16. Chikhaoui, B., Chiazzaro, M., Wang, S.: A new granger causal model for influence evolution in dynamic social networks: The case of dblp. In: Twenty-Ninth AAAI Conference on Artificial Intelligence (2015)

    Google Scholar 

  17. Christakis, N.A., Fowler, J.H.: Social contagion theory: examining dynamic social networks and human behavior. Statist. Med. 32(4), 556–577 (2013)

    Article  MathSciNet  Google Scholar 

  18. Counts, S., De Choudhury, M., Diesner, J., Gilbert, E., Gonzalez, M., Keegan, B., Naaman, M., Wallach, H.: Computational social science: Cscw in the social media Era. In: Proceedings of the Companion Publication of the 17th ACM Conference on Computer Supported Cooperative Work and Social Computing, pp. 105–108. ACM (2014)

    Google Scholar 

  19. Deutsch, M., Gerard, H.B.: A study of normative and informational social influences upon individual judgment. J. Abnorm. Soc. Psychol. 51(3), 629 (1955)

    Article  Google Scholar 

  20. Diebold, F.X.: Elements of forecasting. Citeseer, Ohio (1998)

    Google Scholar 

  21. Diebold, F.X.: Forecasting. Department of Economics, University of Pennsylvania (2015). http://www.ssc.upenn.edu/~fdiebold/Textbooks.html

  22. Eichler, M.: Graphical modelling of multivariate time series. Probab. Theor. Relat. Fields 153(1–2), 233–268 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Eichler, M.: Causal inference with multiple time series: principles and problems. Philos. Trans. Royal Soc. London A Math. Phys. Eng. Sci. 371(1997), 20110613 (2013)

    Article  MathSciNet  Google Scholar 

  24. Ghosh, R., Lerman, K.: Predicting influential users in online social networks. In: Proceedings of KDD Workshop on Social Network Analysis (SNA-KDD), July 2010

    Google Scholar 

  25. González-Bailón, S., Borge-Holthoefer, J., Rivero, A., Moreno, Y.: The dynamics of protest recruitment through an online network. Sci. Rep. 1, 197 (2011)

    Google Scholar 

  26. Goyal, A., Bonchi, F., Lakshmanan, L.V.: Learning influence probabilities in social networks. In: Proceedings of the Third ACM International Conference on Web Search and Data Mining, pp. 241–250. ACM (2010)

    Google Scholar 

  27. Greenberg, J.: Advertisers don’t like facebook’s reactions. They love them. WIRED (2016). http://www.wired.com/2016/02/advertisers-feel-facebooks-new-reactions-%F0%9F%98%8D/

  28. Hlaváčková-Schindler, K., Paluš, M., Vejmelka, M., Bhattacharya, J.: Causality detection based on information-theoretic approaches in time series analysis. Phys. Rep. 441(1), 1–46 (2007)

    Article  Google Scholar 

  29. Katz, E., Lazarsfeld, P.F.: Personal Influence, The Part Played by People in the Flow of Mass Communications. The Free Press, New York (1955)

    Google Scholar 

  30. Kelman, H.C.: Processes of opinion change. Public Opin. Q. 25(1), 57–78 (1961)

    Article  Google Scholar 

  31. Kempe, David, Kleinberg, Jon, Tardos, Éva: Influential nodes in a diffusion model for social networks. In: Caires, Luís, Italiano, Giuseppe, F., Monteiro, Luís, Palamidessi, Catuscia, Yung, Moti (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1127–1138. Springer, Heidelberg (2005). doi:10.1007/11523468_91

    Chapter  Google Scholar 

  32. Kilduff, M., Chiaburu, D.S., Menges, J.I.: Strategic use of emotional intelligence in organizational settings: Exploring the dark side. Res. Organ. Behav. 30, 129–152 (2010)

    Article  Google Scholar 

  33. Lazer, D., Pentland, A., Adamic, L., Aral, S., Barabsi, A.L., Brewer, D., Christakis, N., Contractor, N., Fowler, J., Gutmann, M., Jebara, T., King, G., Macy, M., Roy, D., Van Alstyne, M.: Computational social science. Science 323(5915), 721–723 (2009). http://www.sciencemag.org/content/323/5915/721.short

    Article  Google Scholar 

  34. Mason, W., Vaughan, J.W., Wallach, H.: Computational social science and social computing. Mach. Learn. 95(3), 257 (2014)

    Article  MathSciNet  Google Scholar 

  35. Morriss, P.: Power: A Philosophical Analysis. Manchester University Press, Manchester (1987)

    Google Scholar 

  36. Nickerson, D.W.: Is voting contagious? evidence from two field experiments. Am. Polit. Sci. Rev. 102(01), 49–57 (2008)

    Article  Google Scholar 

  37. Pearl, J.: Causal inference in statistics: An overview. Stat. Surv. 3, 96–146 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  38. Pearl, J.: Causality. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  39. Rogers, E.M.: Diffusion of Innovations. Simon and Schuster, New York (2003)

    Google Scholar 

  40. Runge, J.: Quantifying information transfer and mediation along causal pathways in complex systems. Phys. Rev. E 92(6), 62829 (2015)

    Article  Google Scholar 

  41. Salganik, M.J., Dodds, P.S., Watts, D.J.: Experimental study of inequality and unpredictability in an artificial cultural market. Science 311(5762), 854–856 (2006)

    Article  Google Scholar 

  42. Shalizi, C.: Advanced Data Analysis from an Elementary Point of View. Cambridge University Press, New York (2013)

    Google Scholar 

  43. Shalizi, C.R., Thomas, A.C.: Homophily and contagion are generically confounded in observational social network studies. Sociol. Methods Res. 40(2), 211–239 (2011)

    Article  MathSciNet  Google Scholar 

  44. Sharma, A., Cosley, D.: Distinguishing between personal preferences and social influence in online activity feeds. In: Proceedings of the 19th ACM Conference on Computer-Supported Cooperative Work and Social Computing, pp. 1091–1103. CSCW 2016, NY, USA (2016). http://doi.acm.org/10.1145/2818048.2819982

  45. Sharma, A., Hofman, J.M., Watts, D.J.: Estimating the causal impact of recommendation systems from observational data. In: Proceedings of the Sixteenth ACM Conference on Economics and Computation, pp. 453–470. ACM (2015)

    Google Scholar 

  46. Sperber, D.: Explaining culture: A naturalistic approach. Cambridge University Press, New York (1996)

    Google Scholar 

  47. Spirtes, P.: Introduction to causal inference. J. Mach. Learn. Res. 11(May), 1643–1662 (2010)

    MathSciNet  MATH  Google Scholar 

  48. Wallach, H.: Computational social science: Toward a collaborative future. In: Computational Social Science: Discovery and Prediction (2016)

    Google Scholar 

  49. Watts, D.: Challenging the influentials hypothesis. WOMMA Measuring Word Mouth 3(4), 201–211 (2007)

    Google Scholar 

  50. Watts, D.J.: Everything is obvious: * Once you know the answer. Crown Business (2011)

    Google Scholar 

Download references