Social Influence: From Contagion to a Richer Causal Understanding
- ️Wed Oct 19 2016
References
Ackland, R.: Web social science: Concepts, data and tools for social scientists in the digital age. Sage, London (2013)
Alshamsi, A., Pianesi, F., Lepri, B., Pentland, A., Rahwan, I.: Beyond contagion: Reality mining reveals complex patterns of social influence. PloS One 10(8), e0135740 (2015)
Anagnostopoulos, A., Kumar, R., Mahdian, M.: Influence and correlation in social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 7–15. ACM (2008)
Aral, S., Muchnik, L., Sundararajan, A.: Distinguishing influence-based contagion from homophily-driven diffusion in dynamic networks. Proc. Nat. Acad. Sci. 106(51), 21544–21549 (2009)
Aral, S., Walker, D.: Identifying influential and susceptible members of social networks. Science 337(6092), 337–341 (2012)
Bakshy, E., Hofman, J.M., Mason, W.A., Watts, D.J.: Everyone’s an influencer: quantifying influence on twitter. In: Proceedings of the fourth ACM international conference on Web search and data mining. pp. 65–74. ACM (2011)
Bakshy, E., Rosenn, I., Marlow, C., Adamic, L.: The role of social networks in information diffusion. In: Proceedings of the 21st International Conference on World Wide Web, pp. 519–528. ACM (2012)
Barbieri, N., Bonchi, F., Manco, G.: Influence-based network-oblivious community detection. In: 2013 IEEE 13th International Conference on Data Mining (ICDM), pp. 955–960. IEEE (2013)
Barnett, L., Barrett, A.B., Seth, A.K.: Granger causality and transfer entropy are equivalent for gaussian variables. Phys. Rev. Lett. 103(23), 238701 (2009)
Berger, J.: Contagious: Why Things catch on. Simon and Schuster, New York (2013)
Borge-Holthoefer, J., Perra, N., Gonçalves, B., González-Bailón, S., Arenas, A., Moreno, Y., Vespignani, A.: The dynamics of information-driven coordination phenomena: A transfer entropy analysis. Sci. Adv. 2(4), e1501158 (2016)
Cebrian, M., Rahwan, I., Pentland, A.S.: Beyond viral. Commun. ACM 59(4), 36–39 (2016)
Centola, D., Macy, M.: Complex contagions and the weakness of long ties1. Am. J. Soc. 113(3), 702–734 (2007)
Cha, M., Haddadi, H., Benevenuto, F., Gummadi, P.K.: Measuring user influence in twitter: The million follower fallacy. ICWSM 10, 10–17 (2010)
Cheng, J., Adamic, L., Dow, P.A., Kleinberg, J.M., Leskovec, J.: Can cascades be predicted? In: Proceedings of the 23rd International Conference on World Wide Web, pp. 925–936. International World Wide Web Conferences Steering Committee (2014)
Chikhaoui, B., Chiazzaro, M., Wang, S.: A new granger causal model for influence evolution in dynamic social networks: The case of dblp. In: Twenty-Ninth AAAI Conference on Artificial Intelligence (2015)
Christakis, N.A., Fowler, J.H.: Social contagion theory: examining dynamic social networks and human behavior. Statist. Med. 32(4), 556–577 (2013)
Counts, S., De Choudhury, M., Diesner, J., Gilbert, E., Gonzalez, M., Keegan, B., Naaman, M., Wallach, H.: Computational social science: Cscw in the social media Era. In: Proceedings of the Companion Publication of the 17th ACM Conference on Computer Supported Cooperative Work and Social Computing, pp. 105–108. ACM (2014)
Deutsch, M., Gerard, H.B.: A study of normative and informational social influences upon individual judgment. J. Abnorm. Soc. Psychol. 51(3), 629 (1955)
Diebold, F.X.: Elements of forecasting. Citeseer, Ohio (1998)
Diebold, F.X.: Forecasting. Department of Economics, University of Pennsylvania (2015). http://www.ssc.upenn.edu/~fdiebold/Textbooks.html
Eichler, M.: Graphical modelling of multivariate time series. Probab. Theor. Relat. Fields 153(1–2), 233–268 (2012)
Eichler, M.: Causal inference with multiple time series: principles and problems. Philos. Trans. Royal Soc. London A Math. Phys. Eng. Sci. 371(1997), 20110613 (2013)
Ghosh, R., Lerman, K.: Predicting influential users in online social networks. In: Proceedings of KDD Workshop on Social Network Analysis (SNA-KDD), July 2010
González-Bailón, S., Borge-Holthoefer, J., Rivero, A., Moreno, Y.: The dynamics of protest recruitment through an online network. Sci. Rep. 1, 197 (2011)
Goyal, A., Bonchi, F., Lakshmanan, L.V.: Learning influence probabilities in social networks. In: Proceedings of the Third ACM International Conference on Web Search and Data Mining, pp. 241–250. ACM (2010)
Greenberg, J.: Advertisers don’t like facebook’s reactions. They love them. WIRED (2016). http://www.wired.com/2016/02/advertisers-feel-facebooks-new-reactions-%F0%9F%98%8D/
Hlaváčková-Schindler, K., Paluš, M., Vejmelka, M., Bhattacharya, J.: Causality detection based on information-theoretic approaches in time series analysis. Phys. Rep. 441(1), 1–46 (2007)
Katz, E., Lazarsfeld, P.F.: Personal Influence, The Part Played by People in the Flow of Mass Communications. The Free Press, New York (1955)
Kelman, H.C.: Processes of opinion change. Public Opin. Q. 25(1), 57–78 (1961)
Kempe, David, Kleinberg, Jon, Tardos, Éva: Influential nodes in a diffusion model for social networks. In: Caires, Luís, Italiano, Giuseppe, F., Monteiro, Luís, Palamidessi, Catuscia, Yung, Moti (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1127–1138. Springer, Heidelberg (2005). doi:10.1007/11523468_91
Kilduff, M., Chiaburu, D.S., Menges, J.I.: Strategic use of emotional intelligence in organizational settings: Exploring the dark side. Res. Organ. Behav. 30, 129–152 (2010)
Lazer, D., Pentland, A., Adamic, L., Aral, S., Barabsi, A.L., Brewer, D., Christakis, N., Contractor, N., Fowler, J., Gutmann, M., Jebara, T., King, G., Macy, M., Roy, D., Van Alstyne, M.: Computational social science. Science 323(5915), 721–723 (2009). http://www.sciencemag.org/content/323/5915/721.short
Mason, W., Vaughan, J.W., Wallach, H.: Computational social science and social computing. Mach. Learn. 95(3), 257 (2014)
Morriss, P.: Power: A Philosophical Analysis. Manchester University Press, Manchester (1987)
Nickerson, D.W.: Is voting contagious? evidence from two field experiments. Am. Polit. Sci. Rev. 102(01), 49–57 (2008)
Pearl, J.: Causal inference in statistics: An overview. Stat. Surv. 3, 96–146 (2009)
Pearl, J.: Causality. Cambridge University Press, Cambridge (2009)
Rogers, E.M.: Diffusion of Innovations. Simon and Schuster, New York (2003)
Runge, J.: Quantifying information transfer and mediation along causal pathways in complex systems. Phys. Rev. E 92(6), 62829 (2015)
Salganik, M.J., Dodds, P.S., Watts, D.J.: Experimental study of inequality and unpredictability in an artificial cultural market. Science 311(5762), 854–856 (2006)
Shalizi, C.: Advanced Data Analysis from an Elementary Point of View. Cambridge University Press, New York (2013)
Shalizi, C.R., Thomas, A.C.: Homophily and contagion are generically confounded in observational social network studies. Sociol. Methods Res. 40(2), 211–239 (2011)
Sharma, A., Cosley, D.: Distinguishing between personal preferences and social influence in online activity feeds. In: Proceedings of the 19th ACM Conference on Computer-Supported Cooperative Work and Social Computing, pp. 1091–1103. CSCW 2016, NY, USA (2016). http://doi.acm.org/10.1145/2818048.2819982
Sharma, A., Hofman, J.M., Watts, D.J.: Estimating the causal impact of recommendation systems from observational data. In: Proceedings of the Sixteenth ACM Conference on Economics and Computation, pp. 453–470. ACM (2015)
Sperber, D.: Explaining culture: A naturalistic approach. Cambridge University Press, New York (1996)
Spirtes, P.: Introduction to causal inference. J. Mach. Learn. Res. 11(May), 1643–1662 (2010)
Wallach, H.: Computational social science: Toward a collaborative future. In: Computational Social Science: Discovery and Prediction (2016)
Watts, D.: Challenging the influentials hypothesis. WOMMA Measuring Word Mouth 3(4), 201–211 (2007)
Watts, D.J.: Everything is obvious: * Once you know the answer. Crown Business (2011)