link.springer.com

Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery

  • ️Tue May 23 2017

T. Schlegl—This work has received funding from IBM, FWF (I2714-B31), OeNB (15356, 15929), the Austrian Federal Ministry of Science, Research and Economy (CDL OPTIMA).

References

  1. Del Giorno, A., Bagnell, J.A., Hebert, M.: A discriminative framework for anomaly detection in large videos. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 334–349. Springer, Cham (2016). doi:10.1007/978-3-319-46454-1_21

    Chapter  Google Scholar 

  2. Matteoli, S., Diani, M., Theiler, J.: An overview of background modeling for detection of targets and anomalies in hyperspectral remotely sensed imagery. IEEE J. Selected Top. Appl. Earth Obs. Remote Sens. 7(6), 2317–2336 (2014)

    Article  Google Scholar 

  3. Carrera, D., Boracchi, G., Foi, A., Wohlberg, B.: Detecting anomalous structures by convolutional sparse models. In: 2015 International Joint Conference on Neural Networks (IJCNN), IEEE, pp. 1–8 (2015)

    Google Scholar 

  4. Erfani, S.M., Rajasegarar, S., Karunasekera, S., Leckie, C.: High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning. Pattern Recognit. 58, 121–134 (2016)

    Article  Google Scholar 

  5. Pimentel, M.A., Clifton, D.A., Clifton, L., Tarassenko, L.: A review of novelty detection. Signal Process. 99, 215–249 (2014)

    Article  Google Scholar 

  6. Venhuizen, F.G., van Ginneken, B., Bloemen, B., van Grinsven, M.J., Philipsen, R., Hoyng, C., Theelen, T., Sánchez, C.I.: Automated age-related macular degeneration classification in OCT using unsupervised feature learning. In: SPIE Medical Imaging, International Society for Optics and Photonics, p. 94141I (2015)

    Google Scholar 

  7. Schlegl, T., Waldstein, S.M., Vogl, W.-D., Schmidt-Erfurth, U., Langs, G.: Predicting semantic descriptions from medical images with convolutional neural networks. In: Ourselin, S., Alexander, D.C., Westin, C.-F., Cardoso, M.J. (eds.) IPMI 2015. LNCS, vol. 9123, pp. 437–448. Springer, Cham (2015). doi:10.1007/978-3-319-19992-4_34

    Chapter  Google Scholar 

  8. Seeböck, P., Waldstein, S., Klimscha, S., Gerendas, B.S., Donner, R., Schlegl, T., Schmidt-Erfurth, U., Langs, G.: Identifying and categorizing anomalies in retinal imaging data. In: NIPS 2016 MLHC Workshop. Preprint arXiv:1612.00686 (2016)

  9. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  10. Denton, E.L., Chintala, S., Fergus, R., et al.: Deep generative image models using a Laplacian pyramid of adversarial networks. In: Advances in Neural Information Processing Systems, pp. 1486–1494 (2015)

    Google Scholar 

  11. Donahue, J., Krähenbühl, P., Darrell, T.: Adversarial feature learning. arXiv:1605.09782 (2016)

  12. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv:1511.06434 (2015)

  13. Yeh, R., Chen, C., Lim, T.Y., Hasegawa-Johnson, M., Do, M.N.: Semantic image inpainting with perceptual and contextual losses. arXiv:1607.07539 (2016)

  14. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training GANs. In: Advances in Neural Information Processing Systems, pp. 2226–2234 (2016)

    Google Scholar 

  15. Garvin, M.K., Abràmoff, M.D., Wu, X., Russell, S.R., Burns, T.L., Sonka, M.: Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images. IEEE Trans. Med. Imaging 28(9), 1436–1447 (2009)

    Article  Google Scholar 

  16. Pathak, D., Krähenbühl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: Feature learning by inpainting. CoRR abs/1604.07379 (2016)

    Google Scholar 

  17. Kingma, D., Ba, J.: Adam: A method for stochastic optimization. arXiv:1412.6980 (2014)

  18. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). Software available from http://www.tensorflow.org

Download references