link.springer.com

The First Targeted Therapy to Treat Cancer: The Tamoxifen Tale

  • ️Wed Oct 17 2018
  • Lerner LJ, Holthaus FJ Jr, Thompson CR (1958) A non-steroidal estrogen antagonist 1-(p-2-diethylaminoethoxyphenyl)-1-phenyl-2-p-methoxyphenyl ethanol. Endocrinology 63(3):295–318. https://doi.org/10.1210/endo-63-3-295

    Article  CAS  PubMed  Google Scholar 

  • Lerner LJ, Jordan VC (1990) Development of antiestrogens and their use in breast cancer: eighth Cain memorial award lecture. Cancer Res 50(14):4177–4189

    CAS  PubMed  Google Scholar 

  • Segal SJ, Nelson WO (1958) An orally active compound with anti-fertility effects in rats. Proc Soc Exp Biol Med 98(2):431–436

    Article  CAS  PubMed  Google Scholar 

  • Emmens CW, Cox RI, Martin L (1962) Antioestrogens. Recent Prog Horm Res 18:415

    CAS  Google Scholar 

  • Holtkamp DE, Greslin JG, Root CA, Lerner LJ (1960) Gonadotrophin inhibiting and anti-fecundity effects of chloramiphene. Proc Soc Exp Biol Med 105:197–201

    Article  CAS  PubMed  Google Scholar 

  • Greenblatt RB, Barfield WE, Jungck EC, Ray AW (1961) Induction of ovulation with MRL/41. Preliminary report. JAMA 178:101–104

    Article  CAS  PubMed  Google Scholar 

  • Avigan J, Steinberg D, Vroman HE, Thompson MJ, Mosettig E (1960) Studies of cholesterol biosynthesis. I. The identification of desmosterol in serum and tissues of animals and man treated with MER-29. J Biol Chem 235:3123–3126

    CAS  PubMed  Google Scholar 

  • Laughlin RC, Carey TF (1962) Cataracts in patients treated with triparanol. JAMA 181:339–340

    Article  CAS  PubMed  Google Scholar 

  • Palopoli FP, Feil VJ, Allen RE, Holtkamp DE, Richardson A Jr (1967) Substituted aminoalkoxytriarylhaloethylenes. J Med Chem 10(1):84–86

    Article  CAS  PubMed  Google Scholar 

  • Harper MJ, Walpole AL (1966) Contrasting endocrine activities of cis and trans isomers in a series of substituted triphenylethylenes. Nature 212(5057):87

    Article  CAS  PubMed  Google Scholar 

  • Lednicer D, Lyster SC, Duncan GW (1967) Mammalian antifertility agents. IV. Basic 3,4-dihydronaphthalenes and 1,2,3,4-tetrahydro-1-naphthols. J Med Chem 10(1):78–84

    Article  CAS  PubMed  Google Scholar 

  • Lednicer D, Lyster SC, Aspergren BD, Duncan GW (1966) Mammalian antifertility agents. 3. 1-Aryl-2-phenyl-1,2,3,4-tetrahydro-1-naphthols, 1-aryl-2-phenyl-3,4-dihydronaphthalenes, and their derivatives. J Med Chem 9(2):172–176

    Article  CAS  PubMed  Google Scholar 

  • Clark ER, Jordan VC (1976) Oestrogenic, anti-oestrogenic and fertility effects of some triphenylethanes and triphenylethylenes related to ethamoxytriphetol (MER 25). Br J Pharmacol 57(4):487–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abbott AC, Clark ER, Jordan VC (1976) Inhibition of oestradiol binding to oestrogen receptor proteins by a methyl-substituted analogue of tamoxifen. J Endocrinol 69(3):445–446

    Article  CAS  PubMed  Google Scholar 

  • Jensen EV, Suzuki T, Kawashima T, Stumpf WE, Jungblut PW, DeSombre ER (1968) A two-step mechanism for the interaction of estradiol with rat uterus. Proc Natl Acad Sci U S A 59(2):632–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen EV, Suzuki T, Numata M, Smith S, DeSombre ER (1969) Estrogen-binding substances of target tissues. Steroids 13(4):417–427

    Article  CAS  PubMed  Google Scholar 

  • Toft D, Gorski J (1966) A receptor molecule for estrogens: isolation from the rat uterus and preliminary characterization. Proc Natl Acad Sci U S A 55(6):1574–1581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toft D, Shyamala G, Gorski J (1967) A receptor molecule for estrogens: studies using a cell-free system. Proc Natl Acad Sci U S A 57(6):1740–1743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Legha SS, Slavik M, Carter SK (1976) Nafoxidine--an antiestrogen for the treatment of breast cancer. Cancer 38(4):1535–1541

    Article  CAS  PubMed  Google Scholar 

  • Tatee T, Carlson KE, Katzenellenbogen JA, Robertson DW, Katzenellenbogen BS (1979) Antiestrogens and antiestrogen metabolites: preparation of tritium-labeled (+/−)-cis-3-[p-(1,2,3,4-tetrahydro-6-methoxy-2-phenyl-1-naphthyl)phenoxyl]-1,2-propanediol (U-23469) and characterization and synthesis of a biologically important metabolite. J Med Chem 22(12):1509–1517

    Article  CAS  PubMed  Google Scholar 

  • Rosati RL, Da Silva Jardine P, Cameron KO, Thompson DD, Ke HZ, Toler SM, Brown TA, Pan LC, Ebbinghaus CF, Reinhold AR, Elliott NC, Newhouse BN, Tjoa CM, Sweetnam PM, Cole MJ, Arriola MW, Gauthier JW, Crawford DT, Nickerson DF, Pirie CM, Qi H, Simmons HA, Tkalcevic GT (1998) Discovery and preclinical pharmacology of a novel, potent, nonsteroidal estrogen receptor agonist/antagonist, CP-336156, a diaryltetrahydronaphthalene. J Med Chem 41(16):2928–2931. https://doi.org/10.1021/jm980048b

    Article  CAS  PubMed  Google Scholar 

  • Haddow A, Watkinson JM, Paterson E, Koller PC (1944) Influence of synthetic oestrogens on advanced malignant disease. Br Med J 2(4368):393–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haddow A (1970) David A. Karnofsky memorial lecture. Thoughts on chemical therapy. Cancer 26(4):737–754

    Article  CAS  PubMed  Google Scholar 

  • Walpole AL, Paterson E (1949) Synthetic oestrogens in mammary cancer. Lancet 2(6583):783–786

    Article  CAS  PubMed  Google Scholar 

  • Haddow A, Watkinson JM, Paterson E, Koller PC (1944) Influence of synthetic oestrogens upon advanced malignant disease. Br Med J 1944:393–398

    Article  Google Scholar 

  • Hill GB (2016) Alderley Park discovered. Palatine Books, Lancaster

    Google Scholar 

  • Cole MP, Jones CT, Todd ID (1971) A new anti-oestrogenic agent in late breast cancer. An early clinical appraisal of ICI46474. Br J Cancer 25(2):270–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bedford GR, Richardson DN (1966) Preparation and identification of cis and trans isomers of a substituted triarylethylene. Nature 212:733–734. https://doi.org/10.1038/212733b0

    Article  CAS  Google Scholar 

  • Kilbourn BT, Mais RHB, Owston PG (1968) Identification of isomers of a substituted triarylethylene: the crystal structure of 1-p-(2-dimethylaminoethoxyphenyl)-1,2-cis-diphenylbut-1-ene hydrobromide. Chem Commun:291

    Google Scholar 

  • DiPietro DL, Sanders FJ, Goss DA (1969) Effect of cis and trans isomers of clomiphene citrate on uterine hexokinase activity. Endocrinology 84(6):1404–1408. https://doi.org/10.1210/endo-84-6-1404

    Article  CAS  PubMed  Google Scholar 

  • Harper MJ, Walpole AL (1967) A new derivative of triphenylethylene: effect on implantation and mode of action in rats. J Reprod Fertil 13(1):101–119

    Article  CAS  PubMed  Google Scholar 

  • Harper MJ, Walpole AL (1967) Mode of action of I.C.I. 46,474 in preventing implantation in rats. J Endocrinol 37(1):83–92

    Article  CAS  PubMed  Google Scholar 

  • Labhsetwar AP (1970) Role of oestrogen in spontaneous ovulation demonstrated by use of an antagonist of oestrogen, ICI 46,474. Nature 225(5227):80–81

    Article  CAS  PubMed  Google Scholar 

  • Labhsetwar AP (1970) Role of estrogens in ovulation: a study using the estrogen-antagonist, I.C.I. 46,474. Endocrinology 87(3):542–551. https://doi.org/10.1210/endo-87-3-542

    Article  CAS  PubMed  Google Scholar 

  • Labhsetwar AP (1971) Effects of an antioestrogen on the corpus luteum of rabbits and rats. J Reprod Fertil 25(2):295–297

    Article  CAS  PubMed  Google Scholar 

  • Labhsetwar AP (1972) Role of estrogens in spontaneous ovulation: evidence for the positive feedback in hamsters. Endocrinology 90(4):941–946. https://doi.org/10.1210/endo-90-4-941

    Article  CAS  PubMed  Google Scholar 

  • Klopper A, Hall M (1971) New synthetic agent for the induction of ovulation: preliminary trials in women. Br Med J 1(5741):152–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williamson JG, Ellis JD (1973) The induction of ovulation by tamoxifen. J Obstet Gynaecol Br Commonw 80(9):844–847

    Article  CAS  PubMed  Google Scholar 

  • Jordan VC (2014) Tamoxifen as the first targeted long-term adjuvant therapy for breast cancer. Endocr Relat Cancer 21(3):R235–R246. https://doi.org/10.1530/ERC-14-0092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jordan VC (2008) Tamoxifen: catalyst for the change to targeted therapy. Eur J Cancer 44(1):30–38. https://doi.org/10.1016/j.ejca.2007.11.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jordan VC, Lababidi MK, Langan-Fahey S (1991) Suppression of mouse mammary tumorigenesis by long-term tamoxifen therapy. J Natl Cancer Inst 83(7):492–496

    Article  CAS  PubMed  Google Scholar 

  • Fromson JM, Pearson S, Bramah S (1973) The metabolism of tamoxifen (I.C.I. 46,474). I. In laboratory animals. Xenobiotica 3(11):693–709. https://doi.org/10.3109/00498257309151594

    Article  CAS  PubMed  Google Scholar 

  • Fromson JM, Pearson S, Bramah S (1973) The metabolism of tamoxifen (I.C.I. 46,474). II. In female patients. Xenobiotica 3(11):711–714. https://doi.org/10.3109/00498257309151595

    Article  CAS  PubMed  Google Scholar 

  • Adam HK, Gay MA, Moore RH (1980) Measurement of tamoxifen in serum by thin-layer densitometry. J Endocrinol 84(1):35–42

    Article  CAS  PubMed  Google Scholar 

  • Adam HK, Douglas EJ, Kemp JV (1979) The metabolism of tamoxifen in human. Biochem Pharmacol 28(1):145–147

    Article  CAS  PubMed  Google Scholar 

  • Kemp JV, Adam HK, Wakeling AE, Slater R (1983) Identification and biological activity of tamoxifen metabolites in human serum. Biochem Pharmacol 32(13):2045–2052

    Article  CAS  PubMed  Google Scholar 

  • Bain RR, Jordan VC (1983) Identification of a new metabolite of tamoxifen in patient serum during breast cancer therapy. Biochem Pharmacol 32(2):373–375

    Article  CAS  PubMed  Google Scholar 

  • Jordan VC, Bain RR, Brown RR, Gosden B, Santos MA (1983) Determination and pharmacology of a new hydroxylated metabolite of tamoxifen observed in patient sera during therapy for advanced breast cancer. Cancer Res 43(3):1446–1450

    CAS  PubMed  Google Scholar 

  • Lien EA, Solheim E, Kvinnsland S, Ueland PM (1988) Identification of 4-hydroxy-N-desmethyltamoxifen as a metabolite of tamoxifen in human bile. Cancer Res 48(8):2304–2308

    CAS  PubMed  Google Scholar 

  • Lien EA, Solheim E, Lea OA, Lundgren S, Kvinnsland S, Ueland PM (1989) Distribution of 4-hydroxy-N-desmethyltamoxifen and other tamoxifen metabolites in human biological fluids during tamoxifen treatment. Cancer Res 49(8):2175–2183

    CAS  PubMed  Google Scholar 

  • Johanning J, Kroner P, Thomas M, Zanger UM, Norenberg A, Eichelbaum M, Schwab M, Brauch H, Schroth W, Murdter TE (2018) The formation of estrogen-like tamoxifen metabolites and their influence on enzyme activity and gene expression of ADME genes. Arch Toxicol 92(3):1099–1112. https://doi.org/10.1007/s00204-017-2147-y

    Article  CAS  PubMed  Google Scholar 

  • Jordan VC, Collins MM, Rowsby L, Prestwich G (1977) A monohydroxylated metabolite of tamoxifen with potent antioestrogenic activity. J Endocrinol 75(2):305–316

    Article  CAS  PubMed  Google Scholar 

  • Allen KE, Clark ER, Jordan VC (1980) Evidence for the metabolic activation of non-steroidal antioestrogens: a study of structure-activity relationships. Br J Pharmacol 71(1):83–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dehal SS, Kupfer D (1997) CYP2D6 catalyzes tamoxifen 4-hydroxylation in human liver. Cancer Res 57(16):3402–3406

    CAS  PubMed  Google Scholar 

  • Goetz MP, Suman VJ, Reid JM, Northfelt DW, Mahr MA, Ralya AT, Kuffel M, Buhrow SA, Safgren SL, McGovern RM, Black J, Dockter T, Haddad T, Erlichman C, Adjei AA, Visscher D, Chalmers ZR, Frampton G, Kipp BR, Liu MC, Hawse JR, Doroshow JH, Collins JM, Streicher H, Ames MM, Ingle JN (2017) First-in-human phase I study of the tamoxifen metabolite Z-endoxifen in women with endocrine-refractory metastatic breast cancer. J Clin Oncol 35(30):3391–3400. https://doi.org/10.1200/JCO.2017.73.3246

    Article  PubMed  PubMed Central  Google Scholar 

  • Jordan VC (2017) Endoxifen: the end, or are we at the beginning? J Clin Oncol 35(30):3378–3379. https://doi.org/10.1200/JCO.2017.74.9325

    Article  PubMed  Google Scholar 

  • Levenson AS, Jordan VC (1997) MCF-7: the first hormone-responsive breast cancer cell line. Cancer Res 57(15):3071–3078

    CAS  PubMed  Google Scholar 

  • Lippman ME, Bolan G (1975) Oestrogen-responsive human breast cancer in long term tissue culture. Nature 256(5518):592–593

    Article  CAS  PubMed  Google Scholar 

  • Shafie SM (1980) Estrogen and the growth of breast cancer: new evidence suggests indirect action. Science 209(4457):701–702

    Article  CAS  PubMed  Google Scholar 

  • Berthois Y, Katzenellenbogen JA, Katzenellenbogen BS (1986) Phenol red in tissue culture media is a weak estrogen: implications concerning the study of estrogen-responsive cells in culture. Proc Natl Acad Sci U S A 83(8):2496–2500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bindal RD, Carlson KE, Katzenellenbogen BS, Katzenellenbogen JA (1988) Lipophilic impurities, not phenolsulfonphthalein, account for the estrogenic activity in commercial preparations of phenol red. J Steroid Biochem 31(3):287–293

    Article  CAS  PubMed  Google Scholar 

  • Bindal RD, Katzenellenbogen JA (1988) Bis(4-hydroxyphenyl)[2-(phenoxysulfonyl)phenyl]methane: isolation and structure elucidation of a novel estrogen from commercial preparations of phenol red (phenolsulfonphthalein). J Med Chem 31(10):1978–1983

    Article  CAS  PubMed  Google Scholar 

  • Lieberman ME, Maurer RA, Gorski J (1978) Estrogen control of prolactin synthesis in vitro. Proc Natl Acad Sci U S A 75(12):5946–5949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lieberman ME, Jordan VC, Fritsch M, Santos MA, Gorski J (1983) Direct and reversible inhibition of estradiol-stimulated prolactin synthesis by antiestrogens in vitro. J Biol Chem 258(8):4734–4740

    CAS  PubMed  Google Scholar 

  • Jordan VC, Koch R, Langan S, McCague R (1988) Ligand interaction at the estrogen receptor to program antiestrogen action: a study with nonsteroidal compounds in vitro. Endocrinology 122(4):1449–1454. https://doi.org/10.1210/endo-122-4-1449

    Article  CAS  PubMed  Google Scholar 

  • Jordan VC, Koch R, Mittal S, Schneider MR (1986) Oestrogenic and antioestrogenic actions in a series of triphenylbut-1-enes: modulation of prolactin synthesis in vitro. Br J Pharmacol 87(1):217–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jordan VC, Lieberman ME (1984) Estrogen-stimulated prolactin synthesis in vitro. Classification of agonist, partial agonist, and antagonist actions based on structure. Mol Pharmacol 26(2):279–285

    CAS  PubMed  Google Scholar 

  • Jordan VC, Lieberman ME, Cormier E, Koch R, Bagley JR, Ruenitz PC (1984) Structural requirements for the pharmacological activity of nonsteroidal antiestrogens in vitro. Mol Pharmacol 26(2):272–278

    CAS  PubMed  Google Scholar 

  • Jordan VC (1984) Biochemical pharmacology of antiestrogen action. Pharmacol Rev 36(4):245–276

    CAS  PubMed  Google Scholar 

  • Lieberman ME, Gorski J, Jordan VC (1983) An estrogen receptor model to describe the regulation of prolactin synthesis by antiestrogens in vitro. J Biol Chem 258(8):4741–4745

    CAS  PubMed  Google Scholar 

  • Tate AC, Greene GL, DeSombre ER, Jensen EV, Jordan VC (1984) Differences between estrogen- and antiestrogen-estrogen receptor complexes from human breast tumors identified with an antibody raised against the estrogen receptor. Cancer Res 44(3):1012–1018

    CAS  PubMed  Google Scholar 

  • Tate AC, Lieberman ME, Jordan VC (1984) The inhibition of prolactin synthesis in GH3 rat pituitary tumor cells by monohydroxytamoxifen is associated with changes in the properties of the estrogen receptor. J Steroid Biochem 20(1):391–395

    Article  CAS  PubMed  Google Scholar 

  • Tate AC, DeSombre ER, Greene GL, Jensen EV, Jordan VC (1983) Interaction of [3H] estradiol- and [3H] monohydroxytamoxifen-estrogen receptor complexes with a monoclonal antibody. Breast Cancer Res Treat 3(3):267–277

    Article  CAS  PubMed  Google Scholar 

  • Jordan VC (1987) Laboratory models of breast cancer to aid the elucidation of antiestrogen action. J Lab Clin Med 109(3):267–277

    CAS  PubMed  Google Scholar 

  • Wolf DM, Jordan VC (1994) The estrogen receptor from a tamoxifen stimulated MCF-7 tumor variant contains a point mutation in the ligand binding domain. Breast Cancer Res Treat 31(1):129–138

    Article  CAS  PubMed  Google Scholar 

  • Jordan VC (2001) Selective estrogen receptor modulation: a personal perspective. Cancer Res 61(15):5683–5687

    CAS  PubMed  Google Scholar 

  • Levenson AS, Catherino WH, Jordan VC (1997) Estrogenic activity is increased for an antiestrogen by a natural mutation of the estrogen receptor. J Steroid Biochem Mol Biol 60(5–6):261–268

    Article  CAS  PubMed  Google Scholar 

  • Levenson AS, Jordan VC (1998) The key to the antiestrogenic mechanism of raloxifene is amino acid 351 (aspartate) in the estrogen receptor. Cancer Res 58(9):1872–1875

    CAS  PubMed  Google Scholar 

  • Liu H, Lee ES, Deb Los Reyes A, Zapf JW, Jordan VC (2001) Silencing and reactivation of the selective estrogen receptor modulator-estrogen receptor alpha complex. Cancer Res 61(9):3632–3639

    CAS  PubMed  Google Scholar 

  • Liu H, Park WC, Bentrem DJ, McKian KP, Reyes Ade L, Loweth JA, Schafer JM, Zapf JW, Jordan VC (2002) Structure-function relationships of the raloxifene-estrogen receptor-alpha complex for regulating transforming growth factor-alpha expression in breast cancer cells. J Biol Chem 277(11):9189–9198. https://doi.org/10.1074/jbc.M108335200

    Article  CAS  PubMed  Google Scholar 

  • MacGregor Schafer J, Liu H, Bentrem DJ, Zapf JW, Jordan VC (2000) Allosteric silencing of activating function 1 in the 4-hydroxytamoxifen estrogen receptor complex is induced by substituting glycine for aspartate at amino acid 351. Cancer Res 60(18):5097–5105

    CAS  PubMed  Google Scholar 

  • Brzozowski AM, Pike AC, Dauter Z, Hubbard RE, Bonn T, Engstrom O, Ohman L, Greene GL, Gustafsson JA, Carlquist M (1997) Molecular basis of agonism and antagonism in the oestrogen receptor. Nature 389(6652):753–758. https://doi.org/10.1038/39645

    Article  CAS  PubMed  Google Scholar 

  • Shiau AK, Barstad D, Loria PM, Cheng L, Kushner PJ, Agard DA, Greene GL (1998) The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell 95(7):927–937

    Article  CAS  PubMed  Google Scholar 

  • Fanning SW, Mayne CG, Dharmarajan V, Carlson KE, Martin TA, Novick SJ, Toy W, Green B, Panchamukhi S, Katzenellenbogen BS, Tajkhorshid E, Griffin PR, Shen Y, Chandarlapaty S, Katzenellenbogen JA, Greene GL (2016) Estrogen receptor alpha somatic mutations Y537S and D538G confer breast cancer endocrine resistance by stabilizing the activating function-2 binding conformation. elife 5. https://doi.org/10.7554/eLife.12792

  • Lednicer D, Babcock JC, Marlatt PE, Lyster SC, Duncan GW (1965) Mammalian antifertility agents. I. Derivatives of 2,3-diphenylindenes. J Med Chem 8:52–57

    Article  CAS  PubMed  Google Scholar 

  • Robinson SP, Langan-Fahey SM, Johnson DA, Jordan VC (1991) Metabolites, pharmacodynamics, and pharmacokinetics of tamoxifen in rats and mice compared to the breast cancer patient. Drug Metab Dispos 19(1):36–43

    CAS  PubMed  Google Scholar 

  • Robinson SP, Langan-Fahey SM, Jordan VC (1989) Implications of tamoxifen metabolism in the athymic mouse for the study of antitumor effects upon human breast cancer xenografts. Eur J Cancer Clin Oncol 25(12):1769–1776

    Article  CAS  PubMed  Google Scholar 

  • Langan-Fahey SM, Tormey DC, Jordan VC (1990) Tamoxifen metabolites in patients on long-term adjuvant therapy for breast cancer. Eur J Cancer 26(8):883–888

    Article  CAS  PubMed  Google Scholar 

  • Gottardis MM, Jordan VC (1988) Development of tamoxifen-stimulated growth of MCF-7 tumors in athymic mice after long-term antiestrogen administration. Cancer Res 48(18):5183–5187

    CAS  PubMed  Google Scholar 

  • Sutherland R, Mester J, Baulieu EE (1977) Tamoxifen is a potent “pure” anti-oestrogen in chick oviduct. Nature 267(5610):434–435

    Article  CAS  PubMed  Google Scholar 

  • Osborne CK, Coronado EB, Robinson JP (1987) Human breast cancer in the athymic nude mouse: cytostatic effects of long-term antiestrogen therapy. Eur J Cancer Clin Oncol 23(8):1189–1196

    Article  CAS  PubMed  Google Scholar 

  • Fan P, Agboke FA, Cunliffe HE, Ramos P, Jordan VC (2014) A molecular model for the mechanism of acquired tamoxifen resistance in breast cancer. Eur J Cancer 50(16):2866–2876. https://doi.org/10.1016/j.ejca.2014.08.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan P, Cunliffe HE, Griffith OL, Agboke FA, Ramos P, Gray JW, Jordan VC (2014) Identification of gene regulation patterns underlying both oestrogen- and tamoxifen-stimulated cell growth through global gene expression profiling in breast cancer cells. Eur J Cancer 50(16):2877–2886. https://doi.org/10.1016/j.ejca.2014.08.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gottardis MM, Wagner RJ, Borden EC, Jordan VC (1989) Differential ability of antiestrogens to stimulate breast cancer cell (MCF-7) growth in vivo and in vitro. Cancer Res 49(17):4765–4769

    CAS  PubMed  Google Scholar 

  • Gottardis MM, Jiang SY, Jeng MH, Jordan VC (1989) Inhibition of tamoxifen-stimulated growth of an MCF-7 tumor variant in athymic mice by novel steroidal antiestrogens. Cancer Res 49(15):4090–4093

    CAS  PubMed  Google Scholar 

  • Wakeling AE, Dukes M, Bowler J (1991) A potent specific pure antiestrogen with clinical potential. Cancer Res 51(15):3867–3873

    CAS  PubMed  Google Scholar 

  • Howell A, Robertson JF, Quaresma Albano J, Aschermannova A, Mauriac L, Kleeberg UR, Vergote I, Erikstein B, Webster A, Morris C (2002) Fulvestrant, formerly ICI 182,780, is as effective as anastrozole in postmenopausal women with advanced breast cancer progressing after prior endocrine treatment. J Clin Oncol 20(16):3396–3403. https://doi.org/10.1200/JCO.2002.10.057

    Article  CAS  PubMed  Google Scholar 

  • Osborne CK, Pippen J, Jones SE, Parker LM, Ellis M, Come S, Gertler SZ, May JT, Burton G, Dimery I, Webster A, Morris C, Elledge R, Buzdar A (2002) Double-blind, randomized trial comparing the efficacy and tolerability of fulvestrant versus anastrozole in postmenopausal women with advanced breast cancer progressing on prior endocrine therapy: results of a North American trial. J Clin Oncol 20(16):3386–3395. https://doi.org/10.1200/JCO.2002.10.058

    Article  CAS  PubMed  Google Scholar 

  • Howell A, Dodwell DJ, Anderson H, Redford J (1992) Response after withdrawal of tamoxifen and progestogens in advanced breast cancer. Ann Oncol 3(8):611–617

    Article  CAS  PubMed  Google Scholar 

  • Ravdin PM, Fritz NF, Tormey DC, Jordan VC (1988) Endocrine status of premenopausal node-positive breast cancer patients following adjuvant chemotherapy and long-term tamoxifen. Cancer Res 48(4):1026–1029

    CAS  PubMed  Google Scholar 

  • Jordan VC, Fritz NF, Langan-Fahey S, Thompson M, Tormey DC (1991) Alteration of endocrine parameters in premenopausal women with breast cancer during long-term adjuvant therapy with tamoxifen as the single agent. J Natl Cancer Inst 83(20):1488–1491

    Article  CAS  PubMed  Google Scholar 

  • Jordan VC, Fritz NF, Tormey DC (1987) Long-term adjuvant therapy with tamoxifen: effects on sex hormone binding globulin and antithrombin III. Cancer Res 47(16):4517–4519

    CAS  PubMed  Google Scholar 

  • Jordan VC (1990) Long-term adjuvant tamoxifen therapy for breast cancer. Breast Cancer Res Treat 15(3):125–136

    Article  CAS  PubMed  Google Scholar 

  • Early Breast Cancer Trialists’ Collaborative Group (1998) Tamoxifen for early breast cancer: an overview of the randomised trials. Lancet 351(9114):1451–1467

    Google Scholar 

  • Early Breast Cancer Trialists’ Collaborative Group (2005) Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 365(9472):1687–1717. https://doi.org/10.1016/S0140-6736(05)66544-0

    Article  CAS  Google Scholar 

  • Jordan VC (2014) Linking estrogen-induced apoptosis with decreases in mortality following long-term adjuvant tamoxifen therapy. J Natl Cancer Inst 106(11):dju296. https://doi.org/10.1093/jnci/dju296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fisher B, Costantino J, Redmond C, Poisson R, Bowman D, Couture J, Dimitrov NV, Wolmark N, Wickerham DL, Fisher ER et al (1989) A randomized clinical trial evaluating tamoxifen in the treatment of patients with node-negative breast cancer who have estrogen-receptor-positive tumors. N Engl J Med 320(8):479–484. https://doi.org/10.1056/NEJM198902233200802

    Article  CAS  PubMed  Google Scholar 

  • Fisher B, Dignam J, Bryant J, DeCillis A, Wickerham DL, Wolmark N, Costantino J, Redmond C, Fisher ER, Bowman DM, Deschenes L, Dimitrov NV, Margolese RG, Robidoux A, Shibata H, Terz J, Paterson AH, Feldman MI, Farrar W, Evans J, Lickley HL (1996) Five versus more than five years of tamoxifen therapy for breast cancer patients with negative lymph nodes and estrogen receptor-positive tumors. J Natl Cancer Inst 88(21):1529–1542

    Article  CAS  PubMed  Google Scholar 

  • Pan H, Gray R, Braybrooke J, Davies C, Taylor C, McGale P, Peto R, Pritchard KI, Bergh J, Dowsett M, Hayes DF, EBCTCG (2017) 20-year risks of breast-cancer recurrence after stopping endocrine therapy at 5 years. N Engl J Med 377(19):1836–1846. https://doi.org/10.1056/NEJMoa1701830

    Article  PubMed  PubMed Central  Google Scholar 

  • Davies C, Pan H, Godwin J, Gray R, Arriagada R, Raina V, Abraham M, Medeiros Alencar VH, Badran A, Bonfill X, Bradbury J, Clarke M, Collins R, Davis SR, Delmestri A, Forbes JF, Haddad P, Hou MF, Inbar M, Khaled H, Kielanowska J, Kwan WH, Mathew BS, Mittra I, Muller B, Nicolucci A, Peralta O, Pernas F, Petruzelka L, Pienkowski T, Radhika R, Rajan B, Rubach MT, Tort S, Urrutia G, Valentini M, Wang Y, Peto R, Adjuvant Tamoxifen: Longer Against Shorter Collaborative G (2013) Long-term effects of continuing adjuvant tamoxifen to 10 years versus stopping at 5 years after diagnosis of oestrogen receptor-positive breast cancer: ATLAS, a randomised trial. Lancet 381(9869):805–816. https://doi.org/10.1016/S0140-6736(12)61963-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schiavon G, Smith IE (2014) Status of adjuvant endocrine therapy for breast cancer. Breast Cancer Res 16(2):206

    Article  PubMed  PubMed Central  Google Scholar 

  • Jordan VC (1991) Prolonged adjuvant tamoxifen: a beginning not the end. Ann Oncol 2(7):481–484

    Article  CAS  PubMed  Google Scholar 

  • Jordan VC (1976) Effect of tamoxifen (Ici 46,474) on initiation and growth of Dmba-induced rat mammary carcinomata. Eur J Cancer 12(6):419–424. https://doi.org/10.1016/0014-2964(76)90030-X

    Article  CAS  PubMed  Google Scholar 

  • Cuzick J, Baum M (1985) Tamoxifen and contralateral breast cancer. Lancet 2(8449):282

    Article  CAS  PubMed  Google Scholar 

  • Lacassagne A (1936) Hormonal pathogenesis of adenocarcinoma of the breast. Am J Cancer 27(2):217–228. https://doi.org/10.1158/ajc.1936.217

    Article  Google Scholar 

  • Powles TJ, Hardy JR, Ashley SE, Farrington GM, Cosgrove D, Davey JB, Dowsett M, McKinna JA, Nash AG, Sinnett HD et al (1989) A pilot trial to evaluate the acute toxicity and feasibility of tamoxifen for prevention of breast cancer. Br J Cancer 60(1):126–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fisher B, Costantino JP, Wickerham DL, Cecchini RS, Cronin WM, Robidoux A, Bevers TB, Kavanah MT, Atkins JN, Margolese RG, Runowicz CD, James JM, Ford LG, Wolmark N (2005) Tamoxifen for the prevention of breast cancer: current status of the National Surgical Adjuvant Breast and Bowel Project P-1 study. J Natl Cancer Inst 97(22):1652–1662. https://doi.org/10.1093/jnci/dji372

    Article  CAS  PubMed  Google Scholar 

  • Veronesi U, Maisonneuve P, Costa A, Sacchini V, Maltoni C, Robertson C, Rotmensz N, Boyle P (1998) Prevention of breast cancer with tamoxifen: preliminary findings from the Italian randomised trial among hysterectomised women. Italian tamoxifen prevention study. Lancet 352(9122):93–97

    Article  CAS  PubMed  Google Scholar 

  • Smith SG, Foy R, McGowan JA, Kobayashi LC, DeCensi A, Brown K, Side L, Cuzick J (2017) Prescribing tamoxifen in primary care for the prevention of breast cancer: a national online survey of GPs’ attitudes. Br J Gen Pract 67(659):e414–e427. https://doi.org/10.3399/bjgp17X689377

    Article  PubMed  PubMed Central  Google Scholar 

  • Jensen EV, Block GE, Smith S, Kyser K, DeSombre ER (1971) Estrogen receptors and breast cancer response to adrenalectomy. Natl Cancer Inst Monogr 34:55–70

    CAS  PubMed  Google Scholar 

  • McGuire W, Carbone P, Sears M, Escher G (1975) Estrogen receptors in human breast cancer: an overview. In: WL MG, Carbone PP, Vollmer EP (eds) Estrogen receptors in human breast cancer. Raven Press, New York

    Google Scholar 

  • Consensus conference. Adjuvant chemotherapy for breast cancer (1985) JAMA 254(24):3461–3463

    Google Scholar 

  • Terenius L (1971) Structure-activity relationships of anti-oestrogens with regard to interaction with 17-beta-oestradiol in the mouse uterus and vagina. Acta Endocrinol 66(3):431–447

    Article  CAS  Google Scholar 

  • Jordan VC (2006) Tamoxifen (ICI46,474) as a targeted therapy to treat and prevent breast cancer. Br J Pharmacol 147(Suppl 1):S269–S276. https://doi.org/10.1038/sj.bjp.0706399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jordan VC (1988) The development of tamoxifen for breast cancer therapy: a tribute to the late Arthur L. Walpole. Breast Cancer Res Treat 11(3):197–209

    Article  CAS  PubMed  Google Scholar 

  • Carter SB (1967) Effects of cytochalasins on mammalian cells. Nature 213(5073):261–264

    Article  CAS  PubMed  Google Scholar 

  • Welshons WV, Lieberman ME, Gorski J (1984) Nuclear localization of unoccupied oestrogen receptors. Nature 307(5953):747–749

    Article  CAS  PubMed  Google Scholar 

  • Welshons WV, Grady LH, Judy BM, Jordan VC, Preziosi DE (1993) Subcellular compartmentalization of MCF-7 estrogen receptor synthesis and degradation. Mol Cell Endocrinol 94(2):183–194

    Article  CAS  PubMed  Google Scholar 

  • Herbst AL, Griffiths CT, Kistner RW (1964) Clomiphene citrate (Nsc-35770) in disseminated mammary carcinoma. Cancer Chemother Rep 43:39–41

    CAS  PubMed  Google Scholar 

  • Huggins C, Grand LC, Brillantes FP (1961) Mammary cancer induced by a single feeding of polymucular hydrocarbons, and its suppression. Nature 189:204–207

    Article  CAS  PubMed  Google Scholar 

  • Hunter RE, Longcope C, Jordan VC (1980) Steroid hormone receptors in adenocarcinoma of the endometrium. Gynecol Oncol 10(2):152–161

    Article  CAS  PubMed  Google Scholar 

  • Emmens CW (1971) Compounds exhibiting prolonged antioestrogenic and antifertility activity in mice and rats. J Reprod Fertil 26(2):175–182

    Article  CAS  PubMed  Google Scholar 

  • Emmens CW, Carr WL (1973) Further studies of compounds exhibiting prolonged antioestrogenic and antifertility activity in the mouse. J Reprod Fertil 34(1):29–40

    Article  CAS  PubMed  Google Scholar 

  • Jordan VC (1975) Prolonged antioestrogenic activity of ICI 46, 474 in the ovariectomized mouse. J Reprod Fertil 42(2):251–258

    Article  CAS  PubMed  Google Scholar 

  • Jordan VC, Koerner S (1975) Tamoxifen (ICI 46,474) and the human carcinoma 8S oestrogen receptor. Eur J Cancer 11(3):205–206

    Article  CAS  PubMed  Google Scholar 

  • Jordan VC, Allen KE (1980) Evaluation of the antitumour activity of the non-steroidal antioestrogen monohydroxytamoxifen in the DMBA-induced rat mammary carcinoma model. Eur J Cancer 16(2):239–251

    Article  CAS  PubMed  Google Scholar 

  • Jordan VC, Allen KE, Dix CJ (1980) Pharmacology of tamoxifen in laboratory animals. Cancer Treat Rep 64(6–7):745–759

    CAS  PubMed  Google Scholar 

  • Jordan VC, Dix CJ, Allen KE (1979) The effectiveness of long term tamoxifen treatment in a laboratory model for adjuvant hormone therapy of breast cancer. In: Salmon SE, Jones SE (eds) Adjuvant therapy of cancer II. Grune and Stratton, New York, pp 19–26

    Google Scholar 

  • Jordan VC (2016) A retrospective: on clinical studies with 5-fluorouracil. Cancer Res 76(4):767–768. https://doi.org/10.1158/0008-5472.CAN-16-0150

    Article  CAS  PubMed  Google Scholar 

  • Controlled trial of tamoxifen as single adjuvant agent in management of early breast cancer. Analysis at six years by Nolvadex Adjuvant Trial Organisation (1985) Lancet 1(8433):836–840

    Google Scholar 

  • Adjuvant tamoxifen in the management of operable breast cancer: the Scottish Trial. Report from the Breast Cancer Trials Committee, Scottish Cancer Trials Office (MRC), Edinburgh (1987) Lancet 2(8552):171–175

    Google Scholar 

  • Colletta AA, Benson JR, Baum M (1994) Alternative mechanisms of action of antioestrogens. Breast Cancer Res Treat 31(1):5–9

    Article  CAS  PubMed  Google Scholar 

  • Early Breast Cancer Trialists’ Collaborative G, Davies C, Godwin J, Gray R, Clarke M, Cutter D, Darby S, McGale P, Pan HC, Taylor C, Wang YC, Dowsett M, Ingle J, Peto R (2011) Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials. Lancet 378(9793):771–784. https://doi.org/10.1016/S0140-6736(11)60993-8

    Article  CAS  Google Scholar