Role of the Intestinal Bile Acid Transporters in Bile Acid and Drug Disposition
- ️Tue Oct 26 2010
(1984) The lipid research clinics coronary primary prevention trial results. I. Reduction in incidence of coronary heart disease. JAMA 251:351–364
Aldini R, Roda A, Montagnani M, Polimeni C, Lenzi PL, Cerre C, Galletti G, Roda E (1994) Hepatic uptake and intestinal absorption of bile acids in the rabbit. Eur J Clin Invest 24:691–697
Aldini R, Montagnani M, Roda A, Hrelia S, Biagi PL, Roda E (1996) Intestinal absorption of bile acids in the rabbit: different transport rates in jejunum and ileum. Gastroenterology 110:459–468
Alpini G, Glaser SS, Rodgers R, Phinizy JL, Robertson WE, Lasater J, Caligiuri A, Tretjak Z, LeSage GD (1997) Functional expression of the apical Na+-dependent bile acid transporter in large but not small rat cholangiocytes. Gastroenterology 113:1734–1740
Alpini G, Glaser S, Baiocchi L, Francis H, Xia X, Lesage G (2005) Secretin activation of the apical Na+-dependent bile acid transporter is associated with cholehepatic shunting in rats. Hepatology 41:1037–1045
Anelli PL, Lattuada L, Lorusso V, Lux G, Morisetti A, Morosini P, Serleti M, Uggeri F (2004) Conjugates of gadolinium complexes to bile acids as hepatocyte-directed contrast agents for magnetic resonance imaging. J Med Chem 47:3629–3641
Angelin B, Hershon KS, Brunzell JD (1987) Bile acid metabolism in hereditary forms of hypertriglyceridemia: evidence for an increased synthesis rate in monogenic familial hypertriglyceridemia. Proc Natl Acad Sci U S A 84:5434–5438
Annaba F, Sarwar Z, Kumar P, Saksena S, Turner JR, Dudeja PK, Gill RK, Alrefai WA (2008) Modulation of ileal bile acid transporter (ASBT) activity by depletion of plasma membrane cholesterol: association with lipid rafts. Am J Physiol Gastrointest Liver Physiol 294:G489–G497
Bakris GL, Fonseca VA, Sharma K, Wright EM (2009) Renal sodium-glucose transport: role in diabetes mellitus and potential clinical implications. Kidney Int 75:1272–1277
Balakrishnan A, Polli JE (2006) Apical sodium dependent bile acid transporter (ASBT, SLC10A2): a potential prodrug target. Mol Pharm 3:223–230
Balakrishnan A, Wring SA, Coop A, Polli JE (2006a) Influence of charge and steric bulk in the C-24 region on the interaction of bile acids with human apical sodium-dependent bile acid transporter. Mol Pharm 3:282–292
Balakrishnan A, Wring SA, Polli JE (2006b) Interaction of native bile acids with human apical sodium-dependent bile acid transporter (hASBT): influence of steroidal hydroxylation pattern and C-24 conjugation. Pharm Res 23:1451–1459
Balesaria S, Pell RJ, Abbott LJ, Tasleem A, Chavele KM, Barley NF, Khair U, Simon A, Moriarty KJ, Brydon WG, Walters JR (2008) Exploring possible mechanisms for primary bile acid malabsorption: evidence for different regulation of ileal bile acid transporter transcripts in chronic diarrhoea. Eur J Gastroenterol Hepatol 20:413–422
Ballatori N (2005) Biology of a novel organic solute and steroid transporter, OSTalpha–OSTbeta. Exp Biol Med (Maywood) 230:689–698
Ballatori N, Christian WV, Lee JY, Dawson PA, Soroka CJ, Boyer JL, Madejczyk MS, Li N (2005) OSTalpha-OSTbeta: a major basolateral bile acid and steroid transporter in human intestinal, renal, and biliary epithelia. Hepatology 42:1270–1279
Ballatori N, Fang F, Christian WV, Li N, Hammond CL (2008) Ostalpha-Ostbeta is required for bile acid and conjugated steroid disposition in the intestine, kidney, and liver. Am J Physiol Gastrointest Liver Physiol 295:G179–G186
Banerjee A, Swaan PW (2006) Membrane topology of human ASBT (SLC10A2) determined by dual label epitope insertion scanning mutagenesis. New evidence for seven transmembrane domains. Biochemistry 45:943–953
Banerjee A, Ray A, Chang C, Swaan PW (2005) Site-directed mutagenesis and use of bile acid-MTS conjugates to probe the role of cysteines in the human apical sodium-dependent bile acid transporter (SLC10A2). Biochemistry 44:8908–8917
Banerjee A, Hussainzada N, Khandelwal A, Swaan PW (2008) Electrostatic and potential cation-pi forces may guide the interaction of extracellular loop III with Na+ and bile acids for human apical Na+-dependent bile acid transporter. Biochem J 410:391–400
Baringhaus KH, Matter H, Stengelin S, Kramer W (1999) Substrate specificity of the ileal and the hepatic Na(+)/bile acid cotransporters of the rabbit. II. A reliable 3D QSAR pharmacophore model for the ileal Na(+)/bile acid cotransporter. J Lipid Res 40:2158–2168
Battle MA, Bondow BJ, Iverson MA, Adams SJ, Jandacek RJ, Tso P, Duncan SA (2008) GATA4 is essential for jejunal function in mice. Gastroenterology 135:1671–1686
Bays HE, Goldberg RB (2007) The ‘forgotten’ bile acid sequestrants: is now a good time to remember? Am J Ther 14:567–580
Bergheim I, Harsch S, Mueller O, Schimmel S, Fritz P, Stange EF (2006) Apical sodium bile acid transporter and ileal lipid binding protein in gallstone carriers. J Lipid Res 47:42–50
Bhat BG, Rapp SR, Beaudry JA, Napawan N, Butteiger DN, Hall KA, Null CL, Luo Y, Keller BT (2003) Inhibition of ileal bile acid transport and reduced atherosclerosis in apoE−/− mice by SC-435. J Lipid Res 44:1614–1621
Bhat L, Jandeleit B, Dias TM, Moors TL, Gallop MA (2005) Synthesis and biological evaluation of novel steroidal pyrazoles as substrates for bile acid transporters. Bioorg Med Chem Lett 15:85–87
Booker ML (2001) S-8921 (Shionogi). Curr Opin Investig Drugs 2:393–395
Bosse T, Piaseckyj CM, Burghard E, Fialkovich JJ, Rajagopal S, Pu WT, Krasinski SD (2006) Gata4 is essential for the maintenance of jejunal-ileal identities in the adult mouse small intestine. Mol Cell Biol 26:9060–9070
Boyer JL, Trauner M, Mennone A, Soroka CJ, Cai SY, Moustafa T, Zollner G, Lee JY, Ballatori N (2006) Upregulation of a basolateral FXR-dependent bile acid efflux transporter OSTalpha-OSTbeta in cholestasis in humans and rodents. Am J Physiol Gastrointest Liver Physiol 290:G1124–G1130
Brink MA, Mendez-Sanchez N, Carey MC (1996) Bilirubin cycles enterohepatically after ileal resection in the rat. Gastroenterology 110:1945–1957
Brink MA, Slors JF, Keulemans YC, Mok KS, De Waart DR, Carey MC, Groen AK, Tytgat GN (1999) Enterohepatic cycling of bilirubin: a putative mechanism for pigment gallstone formation in ileal Crohn’ disease. Gastroenterology 116:1420–1427
Briz O, Serrano MA, Rebollo N, Hagenbuch B, Meier PJ, Koepsell H, Marin JJ (2002) Carriers involved in targeting the cytostatic bile acid-cisplatin derivatives cis-diammine-chloro-cholylglycinate-platinum(II) and cis-diammine-bisursodeoxycholate-platinum(II) toward liver cells. Mol Pharmacol 61:853–860
Brown MS, Goldstein JL (1986) A receptor-mediated pathway for cholesterol homeostasis. Science 232:34–47
Brown JM, Bell TA 3rd, Alger HM, Sawyer JK, Smith TL, Kelley K, Shah R, Wilson MD, Davis MA, Lee RG, Graham MJ, Crooke RM, Rudel LL (2008) Targeted depletion of hepatic ACAT2-driven cholesterol esterification reveals a non-biliary route for fecal neutral sterol loss. J Biol Chem 283:10522–10534
Buchwald H, Varco RL, Matts JP, Long JM, Fitch LL, Campbell GS, Pearce MB, Yellin AE, Edmiston WA, Smink RD Jr et al (1990) Effect of partial ileal bypass surgery on mortality and morbidity from coronary heart disease in patients with hypercholesterolemia. Report of the Program on the Surgical Control of the Hyperlipidemias (POSCH). N Engl J Med 323:946–955
Bundy R, Mauskopf J, Walker JT, Lack L (1977) Interaction of uncharged bile salt derivatives with the ileal bile salt transport system. J Lipid Res 18:389–395
Camilleri M, Nadeau A, Tremaine WJ, Lamsam J, Burton D, Odunsi S, Sweetser S, Singh R (2009) Measurement of serum 7alpha-hydroxy-4-cholesten-3-one (or 7alphaC4), a surrogate test for bile acid malabsorption in health, ileal disease and irritable bowel syndrome using liquid chromatography-tandem mass spectrometry. Neurogastroenterol Motil 21:e734–e743
Chignard N, Mergey M, Veissiere D, Parc R, Capeau J, Poupon R, Paul A, Housset C (2001) Bile acid transport and regulating functions in the human biliary epithelium. Hepatology 33:496–503
Christie DM, Dawson PA, Thevananther S, Shneider BL (1996) Comparative analysis of the ontogeny of a sodium-dependent bile acid transporter in rat kidney and ileum. Am J Physiol 271:G377–G385
Corbett CL, Bartholomew TC, Billing BH, Summerfield JA (1981) Urinary excretion of bile acids in cholestasis: evidence for renal tubular secretion in man. Clin Sci (Lond) 61:773–780
Craddock AL, Love MW, Daniel RW, Kirby LC, Walters HC, Wong MH, Dawson PA (1998) Expression and transport properties of the human ileal and renal sodium-dependent bile acid transporter. Am J Physiol 274:G157–G169
Davis AP (2007) Bile acid scaffolds in supramolecular chemistry: the interplay of design and synthesis. Molecules 12:2106–2122
Davis RA, Attie AD (2008) Deletion of the ileal basolateral bile acid transporter identifies the cellular sentinels that regulate the bile acid pool. Proc Natl Acad Sci U S A 105:4965–4966
Dawson PA, Oelkers P (1995) Bile acid transporters. Curr Opin Lipidol 6:109–114
Dawson PA, Haywood J, Craddock AL, Wilson M, Tietjen M, Kluckman K, Maeda N, Parks JS (2003) Targeted deletion of the ileal bile acid transporter eliminates enterohepatic cycling of bile acids in mice. J Biol Chem 278:33920–33927
Dawson PA, Hubbert M, Haywood J, Craddock AL, Zerangue N, Christian WV, Ballatori N (2005) The heteromeric organic solute transporter alpha-beta, Ostalpha-Ostbeta, is an ileal basolateral bile acid transporter. J Biol Chem 280:6960–6968
Dawson PA, Lan T, Rao A (2009) Bile acid transporters. J Lipid Res 50:2340–2357
De Witt EH, Lack L (1980) Effects of sulfation patterns on intestinal transport of bile salt sulfate esters. Am J Physiol 238:G34–G39
Dietschy JM (1968) Mechanisms for the intestinal absorption of bile acids. J Lipid Res 9:297–309
Dietschy JM, Turley SD (2002) Control of cholesterol turnover in the mouse. J Biol Chem 277:3801–3804
Dietschy JM, Turley SD, Spady DK (1993) Role of liver in the maintenance of cholesterol and low density lipoprotein homeostasis in different animal species, including humans. J Lipid Res 34:1637–1659
Duane WC, Hartich LA, Bartman AE, Ho SB (2000) Diminished gene expression of ileal apical sodium bile acid transporter explains impaired absorption of bile acid in patients with hypertriglyceridemia. J Lipid Res 41:1384–1389
Elsner R, Ziegler K (1989) Determination of the apparent functional molecular mass of the hepatocellular sodium-dependent taurocholate transporter by radiation inactivation. Biochim Biophys Acta 983:113–117
Fagerholm U (2008) Prediction of human pharmacokinetics-biliary and intestinal clearance and enterohepatic circulation. J Pharm Pharmacol 60:535–542
Farivar S, Fromm H, Schindler D, McJunkin B, Schmidt F (1980) Tests of bile-acid and vitamin B12 metabolism in ileal Crohn’s disease. Am J Clin Pathol 73:69–74
Fickert P, Wagner M, Marschall HU, Fuchsbichler A, Zollner G, Tsybrovskyy O, Zatloukal K, Liu J, Waalkes MP, Cover C, Denk H, Hofmann AF, Jaeschke H, Trauner M (2006) 24-norUrsodeoxycholic acid is superior to ursodeoxycholic acid in the treatment of sclerosing cholangitis in Mdr2 (Abcb4) knockout mice. Gastroenterology 130:465–481
Frankenberg T, Rao A, Chen F, Haywood J, Shneider BL, Dawson PA (2006) Regulation of the mouse organic solute transporter alpha-beta, Ostalpha-Ostbeta, by bile acids. Am J Physiol Gastrointest Liver Physiol 290:G912–G922
Fujisawa T, Kimura A, Ushijima K, Nakashima E, Inoue T, Yamashita Y, Kato H (1998) Intestinal absorption of ursodeoxycholic acid in children and adolescents with inflammatory bowel disease. J Pediatr Gastroenterol Nutr 26:279–285
Galman C, Ostlund-Lindqvist AM, Bjorquist A, Schreyer S, Svensson L, Angelin B, Rudling M (2003) Pharmacological interference with intestinal bile acid transport reduces plasma cholesterol in LDL receptor/apoE deficiency. FASEB J 17:265–267
Geyer J, Wilke T, Petzinger E (2006) The solute carrier family SLC10: more than a family of bile acid transporters regarding function and phylogenetic relationships. Naunyn Schmiedebergs Arch Pharmacol 372:413–431
Geyer J, Doring B, Meerkamp K, Ugele B, Bakhiya N, Fernandes CF, Godoy JR, Glatt H, Petzinger E (2007) Cloning and functional characterization of human sodium-dependent organic anion transporter (SLC10A6). J Biol Chem 282:19728–19741
Glaser SS, Alpini G (2009) Activation of the cholehepatic shunt as a potential therapy for primary sclerosing cholangitis. Hepatology 49:1795–1797
Gonzalez PM, Acharya C, Mackerell AD Jr, Polli JE (2009) Inhibition requirements of the human apical sodium-dependent bile acid transporter (hASBT) using aminopiperidine conjugates of glutamyl-bile acids. Pharm Res 26:1665–1678
Gurantz D, Schteingart CD, Hagey LR, Steinbach JH, Grotmol T, Hofmann AF (1991) Hypercholeresis induced by unconjugated bile acid infusion correlates with recovery in bile of unconjugated bile acids. Hepatology 13:540–550
Hagenbuch B, Dawson P (2004) The sodium bile salt cotransport family SLC10. Pflugers Arch 447:566–570
Hagenbuch B, Meier PJ (1994) Molecular cloning, chromosomal localization, and functional characterization of a human liver Na+/bile acid cotransporter. J Clin Invest 93:1326–1331
Hagenbuch B, Stieger B, Foguet M, Lubbert H, Meier PJ (1991) Functional expression cloning and characterization of the hepatocyte Na+/bile acid cotransport system. Proc Natl Acad Sci U S A 88:10629–10633
Halilbasic E, Fiorotto R, Fickert P, Marschall HU, Moustafa T, Spirli C, Fuchsbichler A, Gumhold J, Silbert D, Zatloukal K, Langner C, Maitra U, Denk H, Hofmann AF, Strazzabosco M, Trauner M (2009) Side chain structure determines unique physiologic and therapeutic properties of norursodeoxycholic acid in Mdr2−/− mice. Hepatology 49:1972–1981
Hallen S, Branden M, Dawson PA, Sachs G (1999) Membrane insertion scanning of the human ileal sodium/bile acid co-transporter. Biochemistry 38:11379–11388
Hallen S, Fryklund J, Sachs G (2000) Inhibition of the human sodium/bile acid cotransporters by side-specific methanethiosulfonate sulfhydryl reagents: substrate-controlled accessibility of site of inactivation. Biochemistry 39:6743–6750
Hallen S, Mareninova O, Branden M, Sachs G (2002) Organization of the membrane domain of the human liver sodium/bile acid cotransporter. Biochemistry 41:7253–7266
Hara S, Higaki J, Higashino K, Iwai M, Takasu N, Miyata K, Tonda K, Nagata K, Goh Y, Mizui T (1997) S-8921, an ileal Na+/bile acid cotransporter inhibitor decreases serum cholesterol in hamsters. Life Sci 60:PL365–PL370
Hatch M, Freel RW (2008) The roles and mechanisms of intestinal oxalate transport in oxalate homeostasis. Semin Nephrol 28:143–151
Heubi JE, Balistreri WF, Fondacaro JD, Partin JC, Schubert WK (1982) Primary bile acid malabsorption: defective in vitro ileal active bile acid transport. Gastroenterology 83:804–811
Higaki J, Hara S, Takasu N, Tonda K, Miyata K, Shike T, Nagata K, Mizui T (1998) Inhibition of ileal Na+/bile acid cotransporter by S-8921 reduces serum cholesterol and prevents atherosclerosis in rabbits. Arterioscler Thromb Vasc Biol 18:1304–1311
Ho RH, Leake BF, Roberts RL, Lee W, Kim RB (2004) Ethnicity-dependent polymorphism in Na+-taurocholate cotransporting polypeptide (SLC10A1) reveals a domain critical for bile acid substrate recognition. J Biol Chem 279:7213–7222
Ho RH, Tirona RG, Leake BF, Glaeser H, Lee W, Lemke CJ, Wang Y, Kim RB (2006) Drug and bile acid transporters in rosuvastatin hepatic uptake: function, expression, and pharmacogenetics. Gastroenterology 130:1793–1806
Hofmann AF, Hagey LR (2008) Bile acids: chemistry, pathochemistry, biology, pathobiology, and therapeutics. Cell Mol Life Sci 65:2461–2483
Hofmann AF, Poley JR (1972) Role of bile acid malabsorption in pathogenesis of diarrhea and steatorrhea in patients with ileal resection. I. Response to cholestyramine or replacement of dietary long chain triglyceride by medium chain triglyceride. Gastroenterology 62:918–934
Hofmann AF, Molino G, Milanese M, Belforte G (1983) Description and simulation of a physiological pharmacokinetic model for the metabolism and enterohepatic circulation of bile acids in man. Cholic acid in healthy man. J Clin Invest 71:1003–1022
Hofmann AF, Zakko SF, Lira M, Clerici C, Hagey LR, Lambert KK, Steinbach JH, Schteingart CD, Olinga P, Groothuis GM (2005) Novel biotransformation and physiological properties of norursodeoxycholic acid in humans. Hepatology 42:1391–1398
Hofmann AF, Hagey LR, Krasowski MD (2010) Bile salts of vertebrates: structural variation and possible evolutionary significance. J Lipid Res 51:226–246
Holzer A, Harsch S, Renner O, Strohmeyer A, Schimmel S, Wehkamp J, Fritz P, Stange EF (2008) Diminished expression of apical sodium-dependent bile acid transporter in gallstone disease is independent of ileal inflammation. Digestion 78:52–59
Hruz P, Zimmermann C, Gutmann H, Degen L, Beuers U, Terracciano L, Drewe J, Beglinger C (2006) Adaptive regulation of the ileal apical sodium dependent bile acid transporter (ASBT) in patients with obstructive cholestasis. Gut 55:395–402
Huang HC, Tremont SJ, Lee LF, Keller BT, Carpenter AJ, Wang CC, Banerjee SC, Both SR, Fletcher T, Garland DJ, Huang W, Jones C, Koeller KJ, Kolodziej SA, Li J, Manning RE, Mahoney MW, Miller RE, Mischke DA, Rath NP, Reinhard EJ, Tollefson MB, Vernier WF, Wagner GM, Rapp SR, Beaudry J, Glenn K, Regina K, Schuh JR, Smith ME, Trivedi JS, Reitz DB (2005) Discovery of potent, nonsystemic apical sodium-codependent bile acid transporter inhibitors (Part 2). J Med Chem 48:5853–5868
Huff MW, Telford DE, Edwards JY, Burnett JR, Barrett PH, Rapp SR, Napawan N, Keller BT (2002) Inhibition of the apical sodium-dependent bile acid transporter reduces LDL cholesterol and apoB by enhanced plasma clearance of LDL apoB. Arterioscler Thromb Vasc Biol 22:1884–1891
Hulzebos CV, Renfurm L, Bandsma RH, Verkade HJ, Boer T, Boverhof R, Tanaka H, Mierau I, Sauer PJ, Kuipers F, Stellaard F (2001) Measurement of parameters of cholic acid kinetics in plasma using a microscale stable isotope dilution technique: application to rodents and humans. J Lipid Res 42:1923–1929
Hussainzada N, Banerjee A, Swaan PW (2006) Transmembrane domain VII of the human apical sodium-dependent bile acid transporter ASBT (SLC10A2) lines the substrate translocation pathway. Mol Pharmacol 70:1565–1574
Hussainzada N, Khandewal A, Swaan PW (2008) Conformational flexibility of helix VI is essential for substrate permeation of the human apical sodium-dependent bile acid transporter. Mol Pharmacol 73:305–313
Hussainzada N, Claro Da Silva T, Swaan PW (2009) The cytosolic half of helix III forms the substrate exit route during permeation events of the sodium/bile acid cotransporter ASBT. Biochemistry 48:8528–8539
Inagaki T, Choi M, Moschetta A, Peng L, Cummins CL, McDonald JG, Luo G, Jones SA, Goodwin B, Richardson JA, Gerard RD, Repa JJ, Mangelsdorf DJ, Kliewer SA (2005) Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab 2:217–225
Johnson AD, Kavousi M, Smith AV, Chen MH, Dehghan A, Aspelund T, Lin JP, van Duijn CM, Harris TB, Cupples LA, Uitterlinden AG, Launer L, Hofman A, Rivadeneira F, Stricker B, Yang Q, O'Donnell CJ, Gudnason V, Witteman JC (2009) Genome-wide association meta-analysis for total serum bilirubin levels. Hum Mol Genet 18:2700–2710
Jung D, Inagaki T, Gerard RD, Dawson PA, Kliewer SA, Mangelsdorf DJ, Moschetta A (2007) FXR agonists and FGF15 reduce fecal bile acid excretion in a mouse model of bile acid malabsorption. J Lipid Res 48:2693–2700
Kagedahl M, Swaan PW, Redemann CT, Tang M, Craik CS, Szoka FC Jr, Oie S (1997) Use of the intestinal bile acid transporter for the uptake of cholic acid conjugates with HIV-1 protease inhibitory activity. Pharm Res 14:176–180
Kapadia CR, Essandoh LK (1988) Active absorption of vitamin B12 and conjugated bile salts by guinea pig ileum occurs in villous and not crypt cells. Dig Dis Sci 33:1377–1382
Khantwal CM, Swaan PW (2008) Cytosolic half of transmembrane domain IV of the human bile acid transporter hASBT (SLC10A2) forms part of the substrate translocation pathway. Biochemistry 47:3606–3614
Kitayama K, Nakai D, Kono K, van der Hoop AG, Kurata H, de Wit EC, Cohen LH, Inaba T, Kohama T (2006) Novel non-systemic inhibitor of ileal apical Na+-dependent bile acid transporter reduces serum cholesterol levels in hamsters and monkeys. Eur J Pharmacol 539:89–98
Kok T, Hulzebos CV, Wolters H, Havinga R, Agellon LB, Stellaard F, Shan B, Schwarz M, Kuipers F (2003) Enterohepatic circulation of bile salts in farnesoid X receptor-deficient mice: efficient intestinal bile salt absorption in the absence of ileal bile acid-binding protein. J Biol Chem 278:41930–41937
Krag B, Krag B (1976) Regional ileitis (Crohn’s disease): I. Kinetics of bile acid absorption in the perfused ileum. Scand J Gastroenterol 11:481–486
Krag E, Phillips SF (1974) Active and passive bile acid absorption in man. Perfusion studies of the ileum and jejunum. J Clin Invest 53:1686–1694
Kramer W, Glombik H (2006) Bile acid reabsorption inhibitors (BARI): novel hypolipidemic drugs. Curr Med Chem 13:997–1016
Kramer W, Wess G (1996) Bile acid transport systems as pharmaceutical targets. Eur J Clin Invest 26:715–732
Kramer W, Bickel U, Buscher HP, Gerok W, Kurz G (1982) Bile-salt-binding polypeptides in plasma membranes of hepatocytes revealed by photoaffinity labelling. Eur J Biochem 129:13–24
Kramer W, Wess G, Schubert G, Bickel M, Girbig F, Gutjahr U, Kowalewski S, Baringhaus KH, Enhsen A, Glombik H et al (1992) Liver-specific drug targeting by coupling to bile acids. J Biol Chem 267:18598–18604
Kramer W, Girbig F, Gutjahr U, Kowalewski S, Jouvenal K, Muller G, Tripier D, Wess G (1993) Intestinal bile acid absorption. Na(+)-dependent bile acid transport activity in rabbit small intestine correlates with the coexpression of an integral 93-kDa and a peripheral 14-kDa bile acid-binding membrane protein along the duodenum-ileum axis. J Biol Chem 268:18035–18046
Kramer W, Wess G, Enhsen A, Bock K, Falk E, Hoffmann A, Neckermann G, Gantz D, Schulz S, Nickau L et al (1994a) Bile acid derived HMG-CoA reductase inhibitors. Biochim Biophys Acta 1227:137–154
Kramer W, Wess G, Neckermann G, Schubert G, Fink J, Girbig F, Gutjahr U, Kowalewski S, Baringhaus KH, Boger G et al (1994b) Intestinal absorption of peptides by coupling to bile acids. J Biol Chem 269:10621–10627
Kramer W, Girbig F, Gutjahr U, Kowalewski S (1995) Radiation-inactivation analysis of the Na+/bile acid co-transport system from rabbit ileum. Biochem J 306(Pt 1):241–246
Kramer W, Wess G, Bewersdorf U, Corsiero D, Girbig F, Weyland C, Stengelin S, Enhsen A, Bock K, Kleine H, Le Dreau MA, Schafer HL (1997) Topological photoaffinity labeling of the rabbit ileal Na+/bile-salt-cotransport system. Eur J Biochem 249:456–464
Kramer W, Corsiero D, Friedrich M, Girbig F, Stengelin S, Weyland C (1998) Intestinal absorption of bile acids: paradoxical behaviour of the 14 kDa ileal lipid-binding protein in differential photoaffinity labelling. Biochem J 333(Pt 2):335–341
Kramer W, Stengelin S, Baringhaus KH, Enhsen A, Heuer H, Becker W, Corsiero D, Girbig F, Noll R, Weyland C (1999) Substrate specificity of the ileal and the hepatic Na(+)/bile acid cotransporters of the rabbit. I. Transport studies with membrane vesicles and cell lines expressing the cloned transporters. J Lipid Res 40:1604–1617
Kramer W, Girbig F, Glombik H, Corsiero D, Stengelin S, Weyland C (2001) Identification of a ligand-binding site in the Na+/bile acid cotransporting protein from rabbit ileum. J Biol Chem 276:36020–36027
Kuhajda K, Kevresan S, Kandrac J, Fawcett JP, Mikov M (2006) Chemical and metabolic transformations of selected bile acids. Eur J Drug Metab Pharmacokinet 31:179–235
Kullak-Ublick GA, Glasa J, Boker C, Oswald M, Grutzner U, Hagenbuch B, Stieger B, Meier PJ, Beuers U, Kramer W, Wess G, Paumgartner G (1997) Chlorambucil-taurocholate is transported by bile acid carriers expressed in human hepatocellular carcinomas. Gastroenterology 113:1295–1305
Kurata H, Suzuki S, Ohhata Y, Ikeda T, Hasegawa T, Kitayama K, Inaba T, Kono K, Kohama T (2004) A novel class of apical sodium-dependent bile acid transporter inhibitors: the amphiphilic 4-oxo-1-phenyl-1, 4-dihydroquinoline derivatives. Bioorg Med Chem Lett 14:1183–1186
Lack L (1979) Properties and biological significance of the ileal bile salt transport system. Environ Health Perspect 33:79–90
Lack L, Weiner IM (1966) Intestinal bile salt transport: structure-activity relationships and other properties. Am J Physiol 210:1142–1152
Lack L, Walker JT, Singletary GD (1970) Ileal bile salt transport: in vivo studies of effect of substrate ionization on activity. Am J Physiol 219:487–490
Landrier JF, Eloranta JJ, Vavricka SR, Kullak-Ublick GA (2006) The nuclear receptor for bile acids, FXR, transactivates human organic solute transporter-alpha and -beta genes. Am J Physiol Gastrointest Liver Physiol 290:G476–G485
Lazaridis K, Pham L, Tietz P, Marinelli R, deGroen P, Levine S, Dawson P, LaRusso N (1997) Rat cholangiocytes absorb bile acids at their apical domain via the ileal sodium-dependent bile acid transporter. J Clin Invest 100:2714–2721
Lennernas H (2007) Intestinal permeability and its relevance for absorption and elimination. Xenobiotica 37:1015–1051
Lewis MC, Root C (1990) In vivo transport kinetics and distribution of taurocholate by rat ileum and jejunum. Am J Physiol 259:G233–G238
Lewis MC, Brieaddy LE, Root C (1995) Effects of 2164U90 on ileal bile acid absorption and serum cholesterol in rats and mice. J Lipid Res 36:1098–1105
Li N, Cui Z, Fang F, Lee JY, Ballatori N (2007) Heterodimerization, trafficking and membrane topology of the two proteins, Ost alpha and Ost beta, that constitute the organic solute and steroid transporter. Biochem J 407:363–372
Lin MC, Kramer W, Wilson FA (1990) Identification of cytosolic and microsomal bile acid-binding proteins in rat ileal enterocytes. J Biol Chem 265:14986–14995
Love MW, Craddock AL, Angelin B, Brunzell JD, Duane WC, Dawson PA (2001) Analysis of the ileal bile acid transporter gene, SLC10A2, in subjects with familial hypertriglyceridemia. Arterioscler Thromb Vasc Biol 21:2039–2045
Macias RI, Monte MJ, El-Mir MY, Villanueva GR, Marin JJ (1998) Transport and biotransformation of the new cytostatic complex cis-diammineplatinum(II)-chlorocholylglycinate (Bamet-R2) by the rat liver. J Lipid Res 39:1792–1798
Marcus SN, Schteingart CD, Marquez ML, Hofmann AF, Xia Y, Steinbach JH, Ton-Nu HT, Lillienau J, Angellotti MA, Schmassmann A (1991) Active absorption of conjugated bile acids in vivo. Kinetic parameters and molecular specificity of the ileal transport system in the rat. Gastroenterology 100:212–221
Mareninova O, Shin JM, Vagin O, Turdikulova S, Hallen S, Sachs G (2005) Topography of the membrane domain of the liver Na+-dependent bile acid transporter. Biochemistry 44:13702–13712
Meier Y, Eloranta JJ, Darimont J, Ismair MG, Hiller C, Fried M, Kullak-Ublick GA, Vavricka SR (2007) Regional distribution of solute carrier mRNA expression along the human intestinal tract. Drug Metab Dispos 35:590–594
Meihoff WE, Kern F Jr (1968) Bile salt malabsorption in regional ileitis, ileal resection and mannitol-induced diarrhea. J Clin Invest 47:261–267
Montagnani M, Love MW, Rossel P, Dawson PA, Qvist P (2001) Absence of dysfunctional ileal sodium-bile acid cotransporter gene mutations in patients with adult-onset idiopathic bile acid malabsorption. Scand J Gastroenterol 36:1077–1080
Montagnani M, Abrahamsson A, Galman C, Eggertsen G, Marschall HU, Ravaioli E, Einarsson C, Dawson PA (2006) Analysis of ileal sodium/bile acid cotransporter and related nuclear receptor genes in a family with multiple cases of idiopathic bile acid malabsorption. World J Gastroenterol 12:7710–7714
Morgan WA, Nk T, Ding Y (2008) The use of high performance thin-layer chromatography to determine the role of membrane lipid composition in bile salt-induced kidney cell damage. J Pharmacol Toxicol Methods 57:70–73
Nyhlin H, Merrick M, Eastwood M (1994) Bile acid malabsorption in Crohn's disease and indications for its assessment using SeHCAT. Gut 35:90–93
Oelkers P, Dawson PA (1995) Cloning and chromosomal localization of the human ileal lipid-binding protein. Biochim Biophys Acta 1257:199–202
Oelkers P, Kirby LC, Heubi JE, Dawson PA (1997) Primary bile acid malabsorption caused by mutations in the ileal sodium-dependent bile acid transporter gene (SLC10A2). J Clin Invest 99:1880–1887
Portincasa P, Moschetta A, Palasciano G (2006) Cholesterol gallstone disease. Lancet 368:230–239
Rao A, Haywood J, Craddock AL, Belinsky MG, Kruh GD, Dawson PA (2008) The organic solute transporter alpha-beta, Ostalpha-Ostbeta, is essential for intestinal bile acid transport and homeostasis. Proc Natl Acad Sci U S A 105:3891–3896
Ray A, Banerjee A, Chang C, Khantwal CM, Swaan PW (2006) Design of novel synthetic MTS conjugates of bile acids for site-directed sulfhydryl labeling of cysteine residues in bile acid binding and transporting proteins. Bioorg Med Chem Lett 16:1473–1476
Renner O, Harsch S, Strohmeyer A, Schimmel S, Stange EF (2008) Reduced ileal expression of OSTalpha-OSTbeta in non-obese gallstone disease. J Lipid Res 49:2045–2054
Renner O, Harsch S, Schaeffeler E, Schwab M, Klass DM, Kratzer W, Stange EF (2009) Mutation screening of apical sodium-dependent bile acid transporter (SLC10A2): novel haplotype block including six newly identified variants linked to reduced expression. Hum Genet 125:381–391
Ricketts ML, Boekschoten MV, Kreeft AJ, Hooiveld GJ, Moen CJ, Muller M, Frants RR, Kasanmoentalib S, Post SM, Princen HM, Porter JG, Katan MB, Hofker MH, Moore DD (2007) The cholesterol-raising factor from coffee beans, cafestol, as an agonist ligand for the farnesoid and pregnane X receptors. Mol Endocrinol 21:1603–1616
Root C, Smith CD, Winegar DA, Brieaddy LE, Lewis MC (1995) Inhibition of ileal sodium-dependent bile acid transport by 2164U90. J Lipid Res 36:1106–1115
Root C, Smith CD, Sundseth SS, Pink HM, Wilson JG, Lewis MC (2002) Ileal bile acid transporter inhibition, CYP7A1 induction, and antilipemic action of 264W94. J Lipid Res 43:1320–1330
Sakamoto S, Kusuhara H, Miyata K, Shimaoka H, Kanazu T, Matsuo Y, Nomura K, Okamura N, Hara S, Horie K, Baba T, Sugiyama Y (2007) Glucuronidation converting methyl 1-(3, 4-dimethoxyphenyl)-3-(3-ethylvaleryl)-4-hydroxy-6, 7, 8-trimethoxy-2-na phthoate (S-8921) to a potent apical sodium-dependent bile acid transporter inhibitor, resulting in a hypocholesterolemic action. J Pharmacol Exp Ther 322:610–618
Schiff ER, Small NC, Dietschy JM (1972) Characterization of the kinetics of the passive and active transport mechanisms for bile acid absorption in the small intestine and colon of the rat. J Clin Invest 51:1351–1362
Schiller LR, Hogan RB, Morawski SG, Santa Ana CA, Bern MJ, Norgaard RP, Bo-Linn GW, Fordtran JS (1987) Studies of the prevalence and significance of radiolabeled bile acid malabsorption in a group of patients with idiopathic chronic diarrhea. Gastroenterology 92:151–160
Seward DJ, Koh AS, Boyer JL, Ballatori N (2003) Functional complementation between a novel mammalian polygenic transport complex and an evolutionarily ancient organic solute transporter, OSTalpha-OSTbeta. J Biol Chem 278:27473–27482
Shneider BL, Dawson PA, Christie DM, Hardikar W, Wong MH, Suchy FJ (1995) Cloning and molecular characterization of the ontogeny of a rat ileal sodium-dependent bile acid transporter. J Clin Invest 95:745–754
Shugarts S, Benet LZ (2009) The role of transporters in the pharmacokinetics of orally administered drugs. Pharm Res 26:2039–2054
Sievanen E (2007) Exploitation of bile acid transport systems in prodrug design. Molecules 12:1859–1889
Splinter PL, Lazaridis KN, Dawson PA, LaRusso NF (2006) Cloning and expression of SLC10A4, a putative organic anion transport protein. World J Gastroenterol 12:6797–6805
Starke D, Lischka K, Pagels P, Uhlmann E, Kramer W, Wess G, Petzinger E (2001) Bile acid-oligodeoxynucleotide conjugates: synthesis and liver excretion in rats. Bioorg Med Chem Lett 11:945–949
Steinmetz KL, Schonder KS (2005) Colesevelam: potential uses for the newest bile resin. Cardiovasc Drug Rev 23:15–30
Summerfield JA, Cullen J, Barnes S, Billing BH (1977) Evidence for renal control of urinary excretion of bile acids and bile acid sulphates in the cholestatic syndrome. Clin Sci Mol Med 52:51–65
Sun AQ, Balasubramaniyan N, Chen H, Shahid M, Suchy FJ (2006) Identification of functionally relevant residues of the rat ileal apical sodium-dependent bile acid cotransporter. J Biol Chem 281:16410–16418
Swaan PW, Hillgren KM, Szoka FC Jr, Oie S (1997a) Enhanced transepithelial transport of peptides by conjugation to cholic acid. Bioconjug Chem 8:520–525
Swaan PW, Szoka FC Jr, Oie S (1997b) Molecular modeling of the intestinal bile acid carrier: a comparative molecular field analysis study. J Comput Aided Mol Des 11:581–588
Takashima K, Kohno T, Mori T, Ohtani A, Hirakoso K, Takeyama S (1994) The hypocholesterolemic action of TA-7552 and its effects on cholesterol metabolism in the rat. Atherosclerosis 107:247–257
Telford DE, Edwards JY, Lipson SM, Sutherland B, Barrett PH, Burnett JR, Krul ES, Keller BT, Huff MW (2003) Inhibition of both the apical sodium-dependent bile acid transporter and HMG-CoA reductase markedly enhances the clearance of LDL apoB. J Lipid Res 44:943–952
Tollefson MB, Kolodziej SA, Fletcher TR, Vernier WF, Beaudry JA, Keller BT, Reitz DB (2003) A novel class of apical sodium co-dependent bile acid transporter inhibitors: the 1, 2-benzothiazepines. Bioorg Med Chem Lett 13:3727–3730
Tolle-Sander S, Lentz KA, Maeda DY, Coop A, Polli JE (2004) Increased acyclovir oral bioavailability via a bile acid conjugate. Mol Pharm 1:40–48
Tougaard L, Giese B, Pedersen B, Binder V (1986) Bile acid metabolism in patients with Crohn’s disease in terminal ileum. Scand J Gastroenterol 21:627–633
Tremont SJ, Lee LF, Huang HC, Keller BT, Banerjee SC, Both SR, Carpenter AJ, Wang CC, Garland DJ, Huang W, Jones C, Koeller KJ, Kolodziej SA, Li J, Manning RE, Mahoney MW, Miller RE, Mischke DA, Rath NP, Fletcher T, Reinhard EJ, Tollefson MB, Vernier WF, Wagner GM, Rapp SR, Beaudry J, Glenn K, Regina K, Schuh JR, Smith ME, Trivedi JS, Reitz DB (2005) Discovery of potent, nonsystemic apical sodium-codependent bile acid transporter inhibitors (Part 1). J Med Chem 48:5837–5852
van der Veen JN, van Dijk TH, Vrins CL, van Meer H, Havinga R, Bijsterveld K, Tietge UJ, Groen AK, Kuipers F (2009) Activation of the liver X receptor stimulates trans-intestinal excretion of plasma cholesterol. J Biol Chem 284:19211–19219
van der Velde AE, Vrins CL, van den Oever K, Kunne C, Oude Elferink RP, Kuipers F, Groen AK (2007) Direct intestinal cholesterol secretion contributes significantly to total fecal neutral sterol excretion in mice. Gastroenterology 133:967–975
Vicens M, Macias RI, Briz O, Rodriguez A, El-Mir MY, Medarde M, Marin JJ (2007) Inhibition of the intestinal absorption of bile acids using cationic derivatives: mechanism and repercussions. Biochem Pharmacol 73:394–404
Vitek L, Carey MC (2003) Enterohepatic cycling of bilirubin as a cause of ‘black’ pigment gallstones in adult life. Eur J Clin Invest 33:799–810
Vlahcevic ZR, Bell CC Jr, Buhac I, Farrar JT, Swell L (1970) Diminished bile acid pool size in patients with gallstones. Gastroenterology 59:165–173
Wang W, Seward DJ, Li L, Boyer JL, Ballatori N (2001a) Expression cloning of two genes that together mediate organic solute and steroid transport in the liver of a marine vertebrate. Proc Natl Acad Sci U S A 98:9431–9436
Wang W, Xue S, Ingles SA, Chen Q, Diep AT, Frankl HD, Stolz A, Haile RW (2001b) An association between genetic polymorphisms in the ileal sodium-dependent bile acid transporter gene and the risk of colorectal adenomas. Cancer Epidemiol Biomarkers Prev 10:931–936
Weinman SA, Carruth MW, Dawson PA (1998) Bile acid uptake via the human apical sodium-bile acid cotransporter is electrogenic. J Biol Chem 273:34691–34695
Wess G, Kramer W, Enhsen A, Glombik H, Baringhaus KH, Boger G, Urmann M, Bock K, Kleine H, Neckermann G et al (1994) Specific inhibitors of ileal bile acid transport. J Med Chem 37:873–875
West KL, Zern TL, Butteiger DN, Keller BT, Fernandez ML (2003) SC-435, an ileal apical sodium co-dependent bile acid transporter (ASBT) inhibitor lowers plasma cholesterol and reduces atherosclerosis in guinea pigs. Atherosclerosis 171:201–210
Wilson FA, Burckhardt G, Murer H, Rumrich G, Ullrich KJ (1981) Sodium-coupled taurocholate transport in the proximal convolution of the rat kidney in vivo and in vitro. J Clin Invest 67:1141–1150
Wong MH, Oelkers P, Craddock AL, Dawson PA (1994) Expression cloning and characterization of the hamster ileal sodium-dependent bile acid transporter. J Biol Chem 269:1340–1347
Wong MH, Oelkers P, Dawson PA (1995) Identification of a mutation in the ileal sodium-dependent bile acid transporter gene that abolishes transport activity. J Biol Chem 270:27228–27234
Wu CY, Benet LZ (2005) Predicting drug disposition via application of BCS: transport/absorption/elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm Res 22:11–23
Xia X, Francis H, Glaser S, Alpini G, LeSage G (2006) Bile acid interactions with cholangiocytes. World J Gastroenterol 12:3553–3563
Zahner D, Eckhardt U, Petzinger E (2003) Transport of taurocholate by mutants of negatively charged amino acids, cysteines, and threonines of the rat liver sodium-dependent taurocholate cotransporting polypeptide Ntcp. Eur J Biochem 270:1117–1127
Zhang EY, Phelps MA, Cheng C, Ekins S, Swaan PW (2002) Modeling of active transport systems. Adv Drug Deliv Rev 54:329–354
Zhang EY, Phelps MA, Banerjee A, Khantwal CM, Chang C, Helsper F, Swaan PW (2004) Topology scanning and putative three-dimensional structure of the extracellular binding domains of the apical sodium-dependent bile acid transporter (SLC10A2). Biochemistry 43:11380–11392
Zheng X, Ekins S, Raufman JP, Polli JE (2009) Computational models for drug inhibition of the human apical sodium-dependent bile acid transporter. Mol Pharm 6:1591–1603
Zollner G, Wagner M, Moustafa T, Fickert P, Silbert D, Gumhold J, Fuchsbichler A, Halilbasic E, Denk H, Marschall HU, Trauner M (2006) Coordinated induction of bile acid detoxification and alternative elimination in mice: role of FXR-regulated organic solute transporter-alpha/beta in the adaptive response to bile acids. Am J Physiol Gastrointest Liver Physiol 290:G923–G932