link.springer.com

Red Cell Ageing

  • Ashby W (1919) The determination of the length of life of transfused blood corpuscles in man. J Exp Med 29:267–281

    Article  Google Scholar 

  • Bartosz G (1990) Erythrocyte membrane changes during aging in vivo. In: Harris JR (ed) Blood cell biochemistry, vol 1, Erythroid cells. Plenum Press, New York, pp 45–79

    Google Scholar 

  • Beutler E (1996) Principles of transfusion medicine. In: Rossi EC, Simon TL, Moss GS (eds) Principles of transfusion medicine. Williams and Wilkins, Baltimore, pp 51–60

    Google Scholar 

  • Beutler E, West C, Blume KG (1976) The removal of leukocytes and platelets from whole blood. J Lab Clin Med 88:328–333

    Google Scholar 

  • Borun ER, Figueroa WG, Perry SM (1957) The distribution of 59Fe tagged human erythrocytes in centrifuged specimens as a function of cell age. J Clin Invest 36:676–680

    Article  Google Scholar 

  • Brugnara C, Tosteson D (1987) Cell volume, K transport and cell density in human erythrocytes. Am J Physiol 252:C269–C276

    Google Scholar 

  • Cheng JT, Kahn T, Kaji DM (1984) Mechanism of alteration of sodium potassium pump of erythrocytes from patients with chronic renal failure. J Clin Invest 74:1811–1820

    Article  Google Scholar 

  • Ciana A (2000) Studio sul ruolo dell’età cellulare nelle modificazioni delie proprietà degli eritrociti conservati nelle banche del sangue. Ph.D. thesis, University of Pavia

    Google Scholar 

  • Clark MR (1988) Senescence of red blood cells: progress and problems. Physiol Rev 68:503–554

    Google Scholar 

  • Clark MR, Guatelli JC, White AT, Shohet SB (1981) Study on the dehydrating effect of the red cell Na+/K+ pump in nystatin-treated cells with varying Na+ and water contents. Biochim Biophys Acta 646:422–432

    Article  Google Scholar 

  • Clark MR, Shohet SB (1985) Red cell senescence. In: Schrier SL (ed) The red blood cell membrane. WB Saunders, London, pp 223–257

    Google Scholar 

  • Cullis PR, Hope MJ (1985) Physical properties and functional roles of lipids in membranes. In: Vance DE, Vance JE (eds) Biochemistry of lipids and membranes. The Benjamin Cummings Publishing, Menlo Park, pp 24–72

    Google Scholar 

  • Eadie GS, Brown IW (1953) Red blood cell survival studies. Blood 8:1110–1136

    Google Scholar 

  • Gabrio BW, Finch CA (1954) Erythrocyte preservation. I. The relation of the storage lesion to “in vivo” erythrocyte senescence. J Clin Invest 33:242–246

    Article  Google Scholar 

  • Galili U, Rachmilewitz EA, Peleg A, Flechner I (1984) A unique natural human IgG antibody with anti-alpha-galactosyl specificity. J Exp Med 160:1519–1531

    Article  Google Scholar 

  • Ganzoni AM, Oakes R, Hillman RS (1971) Red cell aging in vivo. J Clin Invest 50:1373–1378

    Article  Google Scholar 

  • Gárdos G (1958) The function of calcium in the potassium permeability of human erythrocytes. Biochim Biophys Acta 30:653–654

    Article  Google Scholar 

  • Halperin JA, Brugnara C, Nicholson-Weiler A (1989) Ca2+-activated K+ efflux limits complemet-mediated lysis of human erythrocytes. J Clin Invest 83:1466–1471

    Article  Google Scholar 

  • Hejnaes K, Matthiesen F, Skriver L (1998) Protein stability in downstream processing. In: Subramanian G (ed) Bioseparation and bioprocessing, vol 2. Whiley-Vch, Weinheim, pp 31–65

    Chapter  Google Scholar 

  • Hentschel WM, Wu LL, Tobin GO, Anstall HB, Smith JB, Williams RR, Owen Ash K (1986) Erythrocyte cation transport activities as a function of cell age. Clin Chim Acta 157:33–44

    Article  Google Scholar 

  • Iida K, Whitlow MB, Nussenzweig V (1991) Membrane vesiculation protects erythrocytes from destruction by complement. J Immunol 147:2638–2642

    Google Scholar 

  • Inaba M, Maede Y (1988) Correlation between protein 4.1a/4.1b ratio and erythrocyte life span. Biochim Biophys Acta 944:256–264

    Article  Google Scholar 

  • Inaba M, Gupta KC, Kuwabara M, Takahashi T, Benz EJ Jr, Maede Y (1992) Deamidation of human erythrocyte protein 4.1: possible role in aging. Blood 79:3355–3361

    Google Scholar 

  • Kannan R, Yuan J, Low PS (1991) Isolation and partial characterization of antibody- and globin-enriched complexes from membranes of dense human erythrocytes. Biochem J 278:57–62

    Google Scholar 

  • Kay MMB (1975) Mechanism of removal of senescent cells by human macrophages in situ. Proc Natl Acad Sci USA 72:3521–3525

    Article  ADS  Google Scholar 

  • Kay MMB, Bosman GJCG, Shapiro SS, Bendich A, Bassel PS (1986) Oxidation as a possible mechanism of cellular aging: vit E deficiency causes premature aging and IgG binding to erythrocytes. Proc Natl Acad Sci USA 83:2463–2467

    Article  ADS  Google Scholar 

  • Keegan TE, Heaton A, Holme S, Owens M, Nelson EJ (1992) Improved post-transfusion quality of density separated AS3 red cells after extended storage. Br J Haematol 82:114–121

    Article  Google Scholar 

  • Kirkpatrick FH, Muhs AG, Kostuk RK, Gabel CW (1979) Dense (aged) circulating red cells contain normal concentrations of adenosine triphosphate (ATP). Blood 54:946–950

    Google Scholar 

  • Larsen FL, Katz S, Roufogalis BD, Brooks DE (1981) Physiological shear stress enhance the Ca++ permeability of human erythrocytes. Nature 294:667–668

    Article  ADS  Google Scholar 

  • Lee P, Kirk RG, Hoffman JF (1984) Interrelations among Na and K content, cell volume, and buoyant density in human red blood cell populations. J Membrane Biol 79:119–126

    Article  Google Scholar 

  • Leggett RW, Williams LR (1995) A proposed blood circulation model for reference man. Health Phys 69:187–201

    Article  Google Scholar 

  • Lew VL, Bookchin MR (1986) Volume, pH, and ion-content regulation in human red cells: analysis of transient behavior with an integrated model. J Membrane Biol 92:57–74

    Article  Google Scholar 

  • Lew VL, Raftos JE, Sorette M, Bookchin RM, Mohandas N (1995) Generation of normal human red cell volume, hemoglobin content, and membrane area distributions by “birth” or “regulation”? Blood 86:334–341

    Google Scholar 

  • Li Q, Jungmann V, Kiyatkin A, Low PS (1996) Prostaglandin E2 stimulates a Ca2+-dependent K+ channel in human erythrocytes and alters cell volume and filterability. J Biol Chem 271:18651–18656

    Article  Google Scholar 

  • Low PS, Waugh SM, Zinke K, Drenckhahn D (1985) The role of hemoglobin denaturation and band 3 clustering in red blood cell aging. Science 227:531–533

    Article  ADS  Google Scholar 

  • Lutz HU (1990) Erythrocyte clearance. In: Harris JR (ed) Blood cell biochemistry, vol 1, Erythroid cells. Plenum Press, New York, pp 81–120

    Google Scholar 

  • Lutz HU, Fasler S, Stammler P, Bussolino F, Arese P (1988) Naturally occurring anti-band 3 antibodies and complement in phagocytosis of oxidatively stressed and in clearance of senescent red cells. Blood Cells 14:175–195

    Google Scholar 

  • Lutz HU, Stammler P, Fasler S, Ingold M, Fehr J (1992) Density separation of human red blood cells on self forming Percoll gradients: correlation with cell age. Biochim Bio-physActa 1116:1–10

    Article  Google Scholar 

  • Marion F (1970) Erythrophagocytosis in the human bone marrow. Scand J Haematol 7:177–183

    Google Scholar 

  • Miescher P (1956) Le mécanisme de l’érythroclasie a l’état normal. Rev Hémat 11:248–259

    Google Scholar 

  • Minetti G, Ciana A, Profumo A, Zappa M, Vercellati C, Zanella A, Arduini A, Brovelli A (2001) Cell age-related monovalent cations content and density changes in stored human erythrocytes. Biochim Biophys Acta 1527:149–155

    Article  Google Scholar 

  • Morrison M, Michaels AW, Phillips DR, Choi SI (1974) Life span of erythrocyte membrane protein. Nature 248:763–764 p

    Article  ADS  Google Scholar 

  • Mueller TJ, Jackson CW, Dockter ME, Morrison M (1987) Membrane skeletal alterations during in vivo mouse red cell aging. Increase in the band 4.1a:4.1b ratio. J Clin Invest 79:492–499

    Article  Google Scholar 

  • O’Neill WC, Mikkelsen RB (1987) The role of pump number and intracellular sodium and potassium in determining Na,K pump activity in human erythrocytes. Metabolism 36:345–350

    Article  Google Scholar 

  • Piccinini G, Minetti G, Balduini C, Brovelli A (1995) Oxidation state of glutathione and membrane proteins in human red cells of different age. Mech Ageing Dev 78:15–26

    Article  Google Scholar 

  • Piomelli S, Lurinsky G, Wasserman LR (1967) The mechanism of red cell aging. I. Relationship between cell age and specific gravity evaluated by ultracentrifugation in a discontinuous density gradient. J Lab Clin Med 69:659–674

    Google Scholar 

  • Rapoport S (1947) Dimensional, osmotic, and chemical changes of erythrocytes in stored blood. I. Blood preserved in sodium citrate, neutral, and acid citrate-glucose (ACD) mixtures. J Clin Invest 26:591–615

    Article  Google Scholar 

  • Rapoport SM (1986) The reticulocyte. CRC Press, Boca Raton

    Google Scholar 

  • Shemin D, Rittenberg D (1946) The life span of the human red blood cell. J Biol Chem 166:627–636

    Google Scholar 

  • Sorette MP, Galili U, Clark MR (1991) Comparison of serum anti-band 3 and anti-Gal antibody binding to density-separated human red blood cells. Blood 77:628–636

    Google Scholar 

  • Stuart J, Ellory JC (1988) Rheological consequences of erythrocyte dehydration. Br J Haematol 69:1–4

    Article  Google Scholar 

  • Surgenor DMN (1974) The red blood cell, vol 1–2. Academic Press, New York

    Google Scholar 

  • Suzuki T, Dale GL (1988) Senescent erythrocytes: isolation of in vivo aged cells and their biochemical characteristics. Proc Natl Acad Sci USA 85:1647–1651

    Article  ADS  Google Scholar 

  • Ten Brinke M, De Regt J (1970) 5lCr-half time of heavy and light human erythrocytes. Scand J Haematol 7:336–341

    Google Scholar 

  • Turner S, William AR, Rees JM (1987) The effects of reinflation on the survival of time-expired stored rabbit erythrocytes in vivo. Vox Sang 52:186–190

    Article  Google Scholar 

  • Waugh RE, Narla M, Jackson CW, Mueller TJ, Suzuki T, Dale GL (1992) Rheologic properties of senescent erythrocytes: loss of surface area and volume with red blood cell age. Blood 79:1351–1358

    Google Scholar 

  • Wolfe LC (1985) The membrane and the lesions of storage in preserved red cells. Transfusion 25:185–203

    Article  Google Scholar 

  • Wood L, Beutler E (1967) Temperature dependence of sodium-potassium activated erythrocyte adenosine triphosphatase. J Lab Clin Med 70:287–294

    Google Scholar