link.springer.com

Peach

  • ️Wed Apr 10 2024

References

  • Aradhya MK, Weeks C, Simon CJ (2004) Molecular characterization of variability and relationships among seven cultivated and selected wild species of Prunus L. using amplified fragment length polymorphism. Sci Hortic 103(1):131–144

    Article  CAS  Google Scholar 

  • Aranzana MJ, Illa E, Howad W, Arús P (2012) A first insight into peach [Prunus persica (L.) Batsch] SNP variability. Tree Genet Genomes 8:1359–1369

    Article  Google Scholar 

  • Bellini E, Giordani E, Nencetti V, Picardi E, Giannelli G (2001) Deanthocyaninic yellow flesh nectarines: advances selection and new breeding program. In: V international peach symposium 592, July, pp 35–41

    Google Scholar 

  • Blenda AV, Verde I, Georgi LL, Reighard GL, Forrest SD, Muñoz-Torres M, Abbott AG (2007) Construction of a genetic linkage map and identification of molecular markers in peach rootstocks for response to peach tree short life syndrome. Tree Genet Genomes 3:341–350

    Article  Google Scholar 

  • Bliss FA, Arulsekar S, Foolad MR, Becerra V, Gillen AM, Warburton ML, Mydin KK (2002) An expanded genetic linkage map of Prunus based on an interspecific cross between almond and peach. Genome 45(3):520–529

    Article  CAS  PubMed  Google Scholar 

  • Bouhadida M, Martín JP, Eremin G, Pinochet J, Moreno MA, Gogorcena Y (2007) Chloroplast DNA diversity in Prunus and its implication on phylogenetic relationships. Am Soc Hort Sci 132:670–679

    Article  CAS  Google Scholar 

  • Bouhadida M, Moreno MA, Gonzalo MJ, Alonso JM, Gogorcena Y (2011) Genetic variability of introduced and local Spanish peach cultivars determined by SSRs markers. Tree Genet Genomes 7(2):257–270

    Article  Google Scholar 

  • Byrne DH, Sherman WB, Bacon TA (2000) Stone fruit genetic pool and its exploitation for growing under warm winter conditions. In: Erez A (ed) Temperate fruit crops in warm climates. Kluwer, Boston, pp 157–230

    Chapter  Google Scholar 

  • Cao K, Zheng Z, Wang L, Liu X, Zhu G, Fang W, Cheng S, Zeng P, Chen C, Wang X, Xie M, Zhong X, Wang X, Zhao P, Bian C, Zhu Y, Zhang J, Ma G, Chen C, Li Y, Hao F, Li Y, Huang G, Li Y, Li H, Guo J, Xu X, Wang J (2014) Comparative population genomics reveals the domestication history of the peach, Prunus persica, and human influences on perennial fruit crops. Genome Biol 15:415

    PubMed  PubMed Central  Google Scholar 

  • Carrasco-Valenzuela T, Muñoz-Espinoza C, Riveros A, Pedreschi R, Arús P, Campos-Vargas R, Meneses C (2019) Expression QTL (eQTLs) analyses reveal candidate genes associated with fruit flesh softening rate in peach [Prunus persica (L.) Batsch]. Front Plant Sci 10:1581

    Article  PubMed  PubMed Central  Google Scholar 

  • Chadha KL (1998) Improvement in tree fruit and plantation crops. Indian J Hortic 55(4):265–296

    Google Scholar 

  • Chaparro JX, Werner DJ, O’malley D, Sederoff RR (1994) Targeted mapping and linkage analysis of morphological isozyme, and RAPD markers in peach. Theor Appl Genet 87:805–815

    Article  CAS  PubMed  Google Scholar 

  • Charles-Edwards DA, Doley D, Rimmington GM (1986) Modelling plant growth and development. Academic, New York

    Google Scholar 

  • Cheng ZP et al (2001) Classification study of Zingjiang peach using RAPD markers. Acta Hort 28:211–217

    Google Scholar 

  • Clark JR, Moore JN (2001) Roygold’ Peach. HortScience 36(7):1344–1346

    Article  Google Scholar 

  • Dirlewanger E, Pascal T, Zuger C, Kervella J (1996) Analysis of molecular markers associated with powdery mildew resistance genes in peach (Prunus persica (L.) Batsch) x Prunus davidiana hybrids. Theor Appl Genet 93:909–919

    Article  CAS  PubMed  Google Scholar 

  • Dirlewanger E, Cosson P, Tavaud M, Aranzana MJ, Poizat C, Zanetto A, Arús P, Laigret F (2002) Development of microsatellite markers in peach [Prunus persica (L.) Batsch] and their use in genetic diversity analysis in peach and sweet cherry. Theor Appl Genet 105:127–138

    Article  CAS  PubMed  Google Scholar 

  • Dirlewanger E, Cosson P, Howad W, Capdeville G, Bosselut N, Claverie M ... Esmenjaud D (2004) Microsatellite genetic linkage maps of myrobalan plum and an almond-peach hybrid – location of root-knot nematode resistance genes. Theor Appl Genet 109:827–838

    Google Scholar 

  • Dirlewanger E, Cosson P, Boudehri K, Renaud C, Capdeville G, Tauzin Y ... Moing A (2006) Development of a second-generation genetic linkage map for peach [Prunus persica (L.) Batsch] and characterization of morphological traits affecting flower and fruit. Tree Genet Genomes 3(1):1–13

    Google Scholar 

  • Edwards GR (1985) Temperature in relation to peach culture in the tropics. In: II international workshop on temperate zone fruits in the tropics and subtropics. Vol 199, pp 61–62

    Google Scholar 

  • Fang J, Tao J, Chao CT (2006) Genetic diversity in fruiting-mei, apricot, plum and peach revealed by AFLP analysis. J Hortic Sci Biotechnol 81(5):898–902

    Article  CAS  Google Scholar 

  • FAO (2021) World food and agriculture – statistical yearbook 2021. FAO, Rome. https://doi.org/10.4060/cb4477en

    Book  Google Scholar 

  • FAOSTAT (2010) Statistical database of the Food and Agriculture Organization of the United Nations. FAO, Rome

    Google Scholar 

  • Faust M, Timon B (1995) Origin and dissemination of the peach. Hort Rev 17:331–379

    Google Scholar 

  • Gillen AM, Bliss FA (2005) Identification and mapping of markers linked to the Mi gene for root-knot nematode resistance in peach. J Am Soc Hortic Sci 130(1):24–33

    Article  CAS  Google Scholar 

  • Gogorcena Y, Sánchez G, Moreno-Vázquez S, Pérez S, Ksouri N (2020) Genomic-based breeding for climate-smart peach varieties. In: Genomic designing of climate-smart fruit crops. Springer, Cham, pp 271–331

    Chapter  Google Scholar 

  • Grasselly C, Damavandy-Kozakonane H (1974) Study of the possibilites of producing intra-and interspecific F1 hybrids in the sub-genus Amygdalus. II. Reciprocal combinations: Prunus amygdalus and Prunus persica [Peaches]. In: Annales de l’amelioration des plantes. Institut national de la recherche agronomique, Paris

    Google Scholar 

  • Hedrick UP (1917) Peaches of New York. State of New York, Department of Agriculture, Albany

    Book  Google Scholar 

  • Hesse CO (1975) Peaches. In: Janick J, Moore JN (eds) Advances in fruit breeding. Purdue University Press, West Lafayette, pp 285–224

    Google Scholar 

  • Horn R, Lecouls AC, Callahan A, Dandekar A, Garay L, McCord P ... Abbott AG (2005) Candidate gene database and transcript map for peach, a model species for fruit trees. Theor Appl Genet 110:1419–1428

    Google Scholar 

  • Hutchins LM (1932) Peach mosaic – a new virus disease. Science 76(1962):123–123

    Article  CAS  PubMed  Google Scholar 

  • Jarausch W, Lansac M, Saillard C, Broquaire JM, Dosba F (1998) PCR assay for specific detection of European stone fruit yellows phytoplasmas and its use for epidemiological studies in France. Eur J Plant Pathol 104:17–27

    Article  Google Scholar 

  • Jinmei Z, Xia X, Guangkun Y, Xinxiong L, Xiaoling C (2014) In vitro conservation and cryopreservation in National Genebank of China. Acta Hortic 1039:309–318

    Article  Google Scholar 

  • Jun JH, Chung KH, Jeong SB, Lee HJ (2002) Development of RAPD and SCAR markers linked to flesh adhesion gene in peach. In: XXVI international horticultural congress: biotechnology in horticultural crop improvement: achievements, opportunities and 625, August, pp 89–96

    Google Scholar 

  • Kaneko T, Terachi T, Tsunewaki K (1986) Studies on the origin of crop species by restriction endonuclease analysis of organellar DNA. II. Restriction analysis of ctDNA of 11 Prunus species. Jpn J Genet 61:157–168

    Article  CAS  Google Scholar 

  • Karakurt Y, Huber DJ, Sherman WB (2000) Quality characteristics of melting and non-melting flesh peach genotypes. J Sci Food Agric 80(13):1848–1853

    Article  CAS  Google Scholar 

  • Khajuria HN, Uppal DK, Chanana YR (1986) Floral biology of peach. In: Nijjar GS (ed) Fruit breeding in India. Oxford & IBH Publishing Co, New Delhi

    Google Scholar 

  • Knight RL (1969) Abstract bibliography of fruit breeding and genetics. Easter Press, London

    Google Scholar 

  • Kotani Y (1972) Economic bases during the later Jomon period in Kyushu, Japan: a reconsideration. PhD dissertation, University of Wisconsin, Madison

    Google Scholar 

  • Layne REC (1987) Peach rootstocks. In: Rom RC, Carlson RF (eds) Rootstocks for fruit crops. Wiley, New York, pp 185–216

    Google Scholar 

  • Lesley JW (1944) A genetic study of saucer fruit shape and other characters in peach. Proc Am Soc Hort Sci 37:218–222

    Google Scholar 

  • Li H-L (1983) The domestication of plants in China: ecogeographical considerations, pp 21–64

    Google Scholar 

  • Li H, Yu T (2001) Effect of chitosan on incidence of brown rot, quality and physiological attributes of postharvest peach fruit. J Sci Food Agric 81(2):269–274

    Article  CAS  Google Scholar 

  • Li X, Wang J, Su M, Zhou J, Zhang M, Du J, Zhou H, Gan K, Jin J, Zhang X, Cao K (2022) Single nucleotide polymorphism detection for peach gummosis disease resistance by genome-wide association study. Front Plant Sci 7(12):763618

    Google Scholar 

  • Meader EM, Blake MA (1940) Some plant characteristics of second generation of P. persica x P. kansuensis crosses. Proc Am Soc Hort Sci 37:223–231

    Google Scholar 

  • Mowrey BD, Werner DJ (1990) Developmental specific isozyme expression in peach. HortScience 25(2):219–222

    Article  CAS  Google Scholar 

  • Nunez-Lilloa G, Balladaresa C, Paveza C, Urraa C, Sanhuezaa D, Vendraminb E, Teresa Dettorib M, Arusc P, Verdeb I, Blanco-Herreraa F, Campos-Vargasa R, Menesesa C (2019) High-density genetic map and QTL analysis of soluble solid content, maturity date, and mealiness in peach using genotyping by sequencing. Sci Hortic 257:108734

    Article  Google Scholar 

  • Pérez S (1989) Characterization of Mexican peach population from tropical and subtropical regions. Acta Hort 254:139–144

    Article  Google Scholar 

  • Pérez S, Montez S, Mejía C (1993) Analysis of peach germplasm in Mexico. J Am Soc Hortic Sci 118(145):519–524

    Article  Google Scholar 

  • Quamme HA, Chen PM, Gusta LV (1982) Relationship of deep Supercooling and dehydration resistance to freezing injury in dormant stem tissues of ‘Starkrimson delicious’ apple and ‘Siberian C’Peach1. J Am Soc Hortic Sci 107(2):299–304

    Article  Google Scholar 

  • Ragazzoni A (2000) Peaches and nectarines-production and international exchanges. In: Informatore Agrario (Italy)

    Google Scholar 

  • Rojas G, Mendez MA, Munoz C, Lemus G, Hinrichsen P (2008) Identification of a minimal microsatellite marker panel for the fingerprinting of peach and nectarine cultivars. Electron J Biotechnol 11(5):1–10

    Article  Google Scholar 

  • Scorza R, Okie W (1990) Peaches. In: Moore JN, Ballington JR Jr (eds) Genetic resources of temperate fruit and nut crops. ISHS-Wageningen, Wageningen, pp 175–232

    Google Scholar 

  • Scorza R, Sherman WB (1996) Peaches. In: Janick J, Moore JN (eds) Fruit breeding. Vol. I. Tree and tropical fruits. Wiley, New York, pp 325–440

    Google Scholar 

  • Scorza R, Mehlenbacher SA, Lightner GW (1985) Inbreeding and co-ancestry of freestone peach cultivars of the Eastern United States and implications for peach germplasm improvement. J Am Soc Hort Sci 110(4):547–552

    Article  Google Scholar 

  • Sharpe RH (1961) Developing new peach varieties for Florida. In: Proceedings of the Florida State Horticultural Society, vol 74, pp 348–352

    Google Scholar 

  • Shimada T, Yamamoto T, Hayama H, Yamaguchi M, Hayashi T (2000) A genetic linkage map constructed by using an intraspecific cross between peach cultivars grown in Japan. J Jpn Soc Hortic Sci 69(5):536–542

    Article  CAS  Google Scholar 

  • Singh IS, Sirohi GS (1977) Breeding peaches for non temperate regions of India. In: Nijjar GS (ed) Fruit breeding in India. Oxford & IBH Publishing Co, New Delhi, p 219

    Google Scholar 

  • Solanki SPS, Sharma NC, Chandel JS, Hota D (2020) Effect of integrated nutrient management on fruit yield and quality of peach (Prunus persica L. Batsch) cv. July Elberta. In: International research journal of pure and applied chemistry, pp 152–160

    Google Scholar 

  • Sosinski B, Gannavarapu M, Hager LD, Beck LE, King GJ, Ryder CD, Rajapakse S, Baird WV, Ballard RE, Abbott AG (2000) Characterization of microsatellite markers in peach [Prunus persica (L.) Batsch]. Theor Appl Genet 101(3):421

    Article  CAS  Google Scholar 

  • Trifonova AA, Boris KV, Mesyats NV, Tsiupka VA, Smykov AV, Mitrofanova IV (2021) Genetic diversity of peach cultivars from the collection of the Nikita botanical garden based on SSR markers. Plan Theory 2021(10):2609

    Google Scholar 

  • Uematsu C, Sasakuma T, Ogihara Y (1991) Phylogenetic relationships in the stone fruit group of Prunus as revealed by restriction fragment analysis of chloroplast DNA. Jpn J Genet 66(1):59–69

    Article  CAS  PubMed  Google Scholar 

  • Uppal DK (1988) Breeding of stone fruits with special reference to low chilling sub-tropical fruits. All India Co-ordinated Fruit improvement project Group Workers Meet., New Delhi, 12–14 Apr 1988

    Google Scholar 

  • Wang Q, Zhang K, Qu X, Jia J, Shi J, Jin D, Wang B (2001) Construction and characterization of a bacterial artificial chromosome library of peach. Theor Appl Genet 103:1174–1179

    Article  CAS  Google Scholar 

  • Wang Y, Georgi LL, Reighard GL, Scorza R, Abbott AG (2002) Genetic mapping of the evergrowing gene in peach [Prunus persica (L.) Batsch]. J Hered 93(5):352–358

    Google Scholar 

  • Wang L, Zhu G, Fang W, Cao K, Wang X, Chen C, Zhao P, Wang X (2012) Peach genetic resource in China. China Agriculture Press Co. Ltd, Beijing

    Google Scholar 

  • Weinbaum SA, Polito VS, Kester DE (1986) Pollen retention following natural self pollination in peach, almond, and peach× almond hybrids. Euphytica 35:193–200

    Article  Google Scholar 

  • Weinberger JH (1944) Characteristics of the progeny of certain peach varieties proc. Am Soc Hortic Sci 45:233–238

    Google Scholar 

  • Weinberger JH (1956) Prolonged dormancy trouble in peaches in the southeast in relation to winter temperatures. Proc Am Soc Hortic Sci 67:107–120

    Google Scholar 

  • Werner DJ, Mowrey BD, Chaparro JX (1988) Variability in flower bud number among peach and nectarine cultivars. HortScience 1;23(3):578–580

    Google Scholar 

  • Werner DJ, Chaparro JX (2005) Genetic interactions of pillar and weeping peach genotypes. HortScience 40(1):18–20

    Article  Google Scholar 

  • Westwood MN (1978) Temperate zone pomology. W.H. Freeman & Co, San Francisco

    Google Scholar 

  • Xu DH, Wahyuni S, Sato Y, Ban t. (2006) Genetic diversity and relationship of Japanese peach cultivars revealed by AFLP and pedigree tracing. Genet Res Crop Evol 53:883–889

    Article  CAS  Google Scholar 

  • Yamamoto T, Mochida K, Hayashi T (2003) Shanhai Suimitsuto, one of the origins of Japanese peach cultivars. J Japan Soc Hortic Sci 72:116–121

    Article  CAS  Google Scholar 

  • Yong Y, Wang L (2020) Genetic resources, breeding programs in China, and gene mining of peach. Hortic Plant J 6(4):205–215

    Article  Google Scholar 

  • Yoon J, Liu D, Song W, Liu W, Zhang A, Li S (2006) Genetic diversity and ecogeographical phylogenetic relationships among peach and nectarine cultivars based on simple sequence repeat (SSR) markers. J Am Soc Hortic Sci 131(4):513–521

    Google Scholar 

Download references