link.springer.com

Models of the rhizosphere - Plant and Soil

  • ️Darrah, P. R.
  • ️Mon Jan 13 2014

Access this article

Log in via an institution

Subscribe and save

  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Anderson, T and Domsch, K H 1985 Maintenance carbon requirements of actively-metabolizing microbial populations under in situ conditions. Soil Biol. Biochem. 17, 197–203.

    Article  CAS  Google Scholar 

  • Barber, S A 1984 Soil Nutrient Bioavailability: A Mechanistic Approach. Wiley, New York.

    Google Scholar 

  • Chapman, S J and Gray, T R G 1981 Endogenous metabolism and macromolecular composition of Arthrobacter globiformis. Soil Biol. Biochem. 13 11–18.

    Article  CAS  Google Scholar 

  • Chapman, S J and Gray, T R G 1986 Importance of cryptic growth, yield factors and maintenance energy in models of microbial growth in soil. Soil Biol. Biochem. 18, 1–4.

    Article  Google Scholar 

  • Coody, P N, Sommer, L E and Nelson, D W 1986 Kinetics of glucose uptake by soil microorganisms. Soil Biol. Biochem. 18, 283–289.

    Article  CAS  Google Scholar 

  • Curl, E A and Truelove, B 1986 The Rhizoshpere. Springer-Verlag, New York.

    Google Scholar 

  • Griggin, G J, Hale, M G and Shay, F J 1976 Nature and quantity of sloughed organic matter produced by roots of axenic peanut plants. Soil Biol. Biochem. 8, 29–32.

    Article  Google Scholar 

  • Hiltner, L 1904 U neuere Erfahrungen und Probleme auf dem Gebiet der Bodenbakteriologie und unter besonderer Berücksichtigung der Gründüngung und Brache. Arb. Dtsch. Landwirt. Ges. 98, 59–78.

    Google Scholar 

  • Jenkinson, D S and Ladd, J N 1981 Microbial biomass in soil: measurement and turnover. In Soil Biochemistry Vol. 5. Eds. E APaul and J NLadd. pp 415–471. Dekker, New York.

    Google Scholar 

  • Lambers, H 1987 Growth, respiration, exudation and symbiotic associations: The fate of carbon translocated to the roots. In Root Development and Function. Eds. P JGregory, J VLake and D ARose. Soc. Exp. Biol. Seminar Series 30. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Marschner, H, Römheld, V and Kakmak, I 1987 Root-induced changes of nutrient availability in the rhizosphere. J. Plant Nutr. 10, 1175–1184.

    Article  CAS  Google Scholar 

  • McCully, M E and Canny, M J 1985 Localization of translocated 14C in roots and root exudates of field grown maize. Physiol. Plant. 65, 380–392.

    Article  CAS  Google Scholar 

  • McDougall, B M and Rovira, A D 1970 Sites of exudation of 14C-labelled compounds from wheat roots. New Phytol. 69, 999–1003.

    Article  Google Scholar 

  • Newman, E I 1985 The rhizosphere: Carbon sources and microbial populations. In Ecological Internations in Soil. Ed. A HFitter. pp 107–122. Blackwell Scientific Publications, London.

    Google Scholar 

  • Newman, E I and Watson, A 1977 Microbial abundance in the rhizosphere: A computer model. Plant and Soil 48, 17–56.

    Article  Google Scholar 

  • Nye, P H and Marriott, F H C 1969 A theoretical study of the distribution of substances around roots resulting from simultaneous diffusion and mass flow. Plant and Soil 30, 459–472.

    Article  Google Scholar 

  • Pirt, S J 1975 Principles of Microbe and Cell Cultivation. Blackwell, Oxford.

    Google Scholar 

  • Rovira, A D 1965 Plant root exudates and their influence upon soil microorganisms. In Ecology of Soil-Borne Plant Pathogens. Eds. K FBaker and W CSnyder. pp 170–186. University of California Press, Berkeley.

    Google Scholar 

  • Smith, G D 1978 Numerical Solution of Partial Differential Equations: Finite Difference Methods. Oxford Applied Mathematics and Computing Science Series. Oxford University Press, Oxford, UK.

    Google Scholar 

  • Smith, J L, McNeal, B L and Cheng, H H 1985 Estimation of the soil microbial biomass: An analysis of the respiratory response of soils. Soil Biol. Biochem. 17, 11–16.

    Article  CAS  Google Scholar 

  • Smith, J L, McNeal, B L, Cheng, H H and Campbell, G S 1986 Calculation of microbial maintenance rates and net nitrogen mineralization in soil at steady state. Soil Sci. Soc. Am. J. 50, 332–338.

    Article  CAS  Google Scholar 

  • Smith, O L 1982 Soil Microbiology: A Model of Decomposition and Nutrient Cycling. CRC Press, Inc., Boca Raton, FL.

    Google Scholar 

  • Tousson, T A, Bega, R V and Nelson, P E (Eds) 1970 Root Diseases and Soil-Borne Pathogens. University of California Press, Berkeley.

    Google Scholar 

  • Trofymow, J A, Coleman, D C and Cambardella, C 1987 Rates of rhizodeposition and ammonium depletion in the rhizosphere of axenic oat roots. Plant and Soil 97, 333–334.

    Article  CAS  Google Scholar 

  • Van derWerf, H and Verstraete, W 1987a Estimation of active soil microbial biomass by mathematical analysis of respiration curves: Development and verification of the model. Soil Biol. Biochem. 19, 253–260.

    Article  Google Scholar 

  • Van derWerf, H and Verstraete, W 1987b Estimation of active soil microbial biomass by mathematical analysis of respiration curves: Calibration of the test procedure. Soil Biol. Biochem. 19, 261–266.

    Article  Google Scholar 

  • Whipps, J M 1984 Environmental factors affecting the loss of carbon from the roots of wheat and barley seedlings. J. Exp. Bot. 35, 767–773.

    Article  CAS  Google Scholar 

  • Whipps, J M and Lynch, J M 1983 Substrate flow and utilization in the rhizosphere of cereals. New Phytol. 95, 605–623.

    Article  CAS  Google Scholar 

Download references