link.springer.com

Microbial abundance in the rhizosphere: A computer model - Plant and Soil

  • ️Watson, A.
  • ️Thu Sep 01 1977

References

  1. Babiuk, L. A. and Paul, E. A., The use of fluorescein isothiocyanate in the determination of the bacterial biomass of grassland soil. Can. J. Microbiol. 16, 57–62 (1970).

    Google Scholar 

  2. Bainbridge, B. W., Bull, A. T., Pirt, S. J., Rowley, B. I. and Trinci, A. P. J., Biochemical and structural changes in non-growing maintained and autolysing cultures of Aspergillus nidulans. Trans. Br. Mycol. Soc. 56, 371–385 (1971).

    Google Scholar 

  3. Barber, D. A. and Gunn, K. B., The effect of mechanical forces on the exudation of organic substances by the roots of cereal plants grown under sterile conditions. New Phytol. 73, 39–45 (1974).

    Google Scholar 

  4. Barber, D. A. and Martin, J. K., Release of organic substances by cereal roots into soil. A. R. C. Letcombe Laboratory Annu. Rep. 1974, 24–26 (1975).

  5. Behera, B. and Wagner, G. H., Microbial growth rate in glucose-amended soil. Soil Sci. Soc. Am. Proc. 38, 591–594 (1974).

    Google Scholar 

  6. Bhat, K. K. S. and Nye, P. H., Diffusion of phosphate to plant roots in soil. III. Depletion around onion roots without root hairs. Plant and Soil 41, 383–394 (1974).

    Google Scholar 

  7. Bowen, G. D. and Rovira, A. D., Are modelling approaches useful in rhizosphere biology? Bull. Ecol. Res. Comm. Stockholm 17, 443–450 (1973).

    Google Scholar 

  8. Bowen, G. D. and Rovira, A. D., Microbial colonization of plant roots. Ann. Rev. Phytopath. 14, 121–144 (1976).

    Google Scholar 

  9. Burleigh, I. G. and Dawes, E. A., Studies on the endogenous metabolism and senescence of starved Sarcina lutea. Biochem. J. 102, 236–250 (1967).

    Google Scholar 

  10. Carter, B. L. A., Bull, A. T., Pirt, S. J. and Rowley, B. I., Relationship between energy substrate utilization and specific growth rate in Aspergillus nidulans. J. Bacteriol. 108, 309–313 (1971).

    Google Scholar 

  11. Christie, P., Newman, E. I. and Campbell, R., Grassland species can influence the abundance of microbes on each other's roots. Nature London 250, 570–571 (1974).

    Google Scholar 

  12. Clark, F. E., Rhizosphere microflora as affected by soil moisture changes. Soil Sci. Soc. Am. Proc. 12, 239–242 (1948).

    Google Scholar 

  13. Clark, F. E., Soil microorganisms and plant roots. Adv. Agron. 1, 242–288 (1949).

    Google Scholar 

  14. Crank, J., The mathematics of diffusion. Oxford University Press (1956).

  15. Ensign, J. C., Long-term starvation survival of rod and spherical cells of Arthrobacter crystallopoietes. J. Bacteriol. 103, 569–577 (1970).

    Google Scholar 

  16. Gray, T. R. G. and Williams, S. T., Microbial productivity in soil. Symp. Soc. Gen. Microbiol. 21, 255–286 (1971).

    Google Scholar 

  17. Gray, T. R. G. and Williams, S. T., Soil micro-organisms. Oliver and Boyd, Edinburgh (1971).

    Google Scholar 

  18. Hamlen, R. A., Lukezic, F. L. and Bloom, J. R., Influence of age and stage of development on the neutral carbohydrate components in root exudates from alfalfa plants grown in a gnotobiotic environment. Can. J. Plant Sci. 52, 633–642 (1972).

    Google Scholar 

  19. Herbert, D., Elsworth, R. and Telling, R. C., The continuous culture of bacteria; a theoretical and experimental study. J. Gen. Microbiol. 14, 601–622 (1956).

    Google Scholar 

  20. Jannasch, H. W., Bacterial growth at low population densities. Nature London 196, 496–497 (1962).

    Google Scholar 

  21. Jannasch, H. W., Growth of marine bacteria at limiting concentrations of organic carbon in seawater. Limnol. Oceanogr. 12, 264–271 (1967).

    Google Scholar 

  22. Katznelson, H., Nature and importance of the rhizosphere. In Baker, K. F. and Snyder, W. C. (Eds.), Ecology of Soil-borne plant Pathogens, 187–207, Murray, London (1965).

    Google Scholar 

  23. Leuenberger, H. G. W., Cultivation of Saccharomyces cerevisiae in continuous culture. Arch. Mikrobiol. 83, 347–358 (1972).

    Google Scholar 

  24. Linford, M. B., Methods of observing soil flora and fauna associated with roots. Soil Sci. 53, 93–103 (1942).

    Google Scholar 

  25. Luscombe, B. M. and Gray, T. R. G., Characteristics of Arthrobacter grown in continuous culture. J. Gen. Microbiol. 82, 213–222 (1974).

    Google Scholar 

  26. Lynch, J. J. and Harper, S. H. T., Formation of ethylene by a soil fungus. J. Gen. Microbiol. 80, 187–195 (1974).

    Google Scholar 

  27. Lynch, J. M. and Harper, S. H. T., Fungal growth rate and the formation of ethylene in soil. J. Gen. Microbiol. 85, 91–96 (1974).

    Google Scholar 

  28. Marr, A. G., Nilson, E. H. and Clark, D. J., The maintenance requirement of Escherichia coli. Ann. N.Y. Acad. Sci. 102, 536–548 (1963).

    Google Scholar 

  29. Mengel, D. B. and Barber, S. A., Development and distribution of the corn root system under field conditions. Agron. J. 66, 341–344 (1974).

    Google Scholar 

  30. Mennett, R. H. and Nakayama, T. O. M., Influence of temperature on substrate and energy conversion in Pseudomonas fluorescens. Appl. Microbiol. 22, 772–776 (1971).

    Google Scholar 

  31. Newman, E. I. and Bowen, H. J., Patterns of distribution of bacteria on root surfaces. Soil Biol. Biochem. 6, 205–209 (1974).

    Google Scholar 

  32. Ng, A. M. L., Smith, J. E. and McIntosh, A. F., Conidiation of Aspergillus niger in continuous culture. Arch. Mikrobiol. 88, 119–126 (1973).

    Google Scholar 

  33. Ng, H., Effect of decreasing growth temperature on cell yield of Escherichia coli. J. Bacteriol. 98, 232–237 (1969).

    Google Scholar 

  34. Ng, H., Ingraham, J. L. and Marr, A. G., Damage and derepression in Escherichia coli resulting from growth at low temperatures. J. Bacteriol. 84, 331–339 (1962).

    Google Scholar 

  35. Palumbo, S. A. and Witter, L. D., Influence of temperature on glucose utilization by Pseudomonas fluorescens. Appl. Microbiol. 18, 137–141 (1969).

    Google Scholar 

  36. Papavizas, G. C. and Davey, C. B., Extent and nature of the rhizosphere of Lupinus. Plant and Soil 14, 215–236 (1961).

    Google Scholar 

  37. Pavlychenko, T. K., Root systems of certain forage crops in relation to the management of agricultural soils. Publ. Nat. Res. Coun. Can. 1088 (1942).

  38. Peterson, E. A., Rouatt, J. W. and Katznelson, H., Microorganisms in the root zone in relation to soil moisture. Can. J. Microbiol. 11, 483–489 (1965).

    Google Scholar 

  39. Pirt, S. J., The maintenance energy of bacteria in growing cultures. Proc. Roy. Soc. London, Ser. B 163, 224–231 (1965).

    Google Scholar 

  40. Pirt, S. J. and Callow, D. S., Studies of the growth of Penicillium chrysogenum in continuous flow culture with reference to penicillin production. J. Appl. Bacteriol. 23, 87–98 (1960).

    Google Scholar 

  41. Porter, L. K., Kemper, W. D., Jackson, R. D. and Stewart, B. A., Chloride diffusion in soils as influenced by moisture content. Soil Sci. Soc. Am. Proc. 24, 460–463 (1960).

    Google Scholar 

  42. Remacle, J. and Rouatt, J. W., Culture mixte de Azotobacter chroococcum et de germes pectinolytiques dans le rhizosphère de l'orge. Ann. Inst. Pasteur Paris 115, 745–754 (1968).

    Google Scholar 

  43. Reynolds, E. R. C., Root distribution and the cause of its spatial variability in Pseudotsuga taxifolia (Poir.) Britt. Plant and Soil 32, 501–517 (1970).

    Google Scholar 

  44. Righelato, R. C., Trinci, A. P. J., Pirt, S. J. and Peat, A., The influence of maintenance energy and growth rate on the metabolic activity, morphology and conidiation of Penicillium chrysogenum. J. Gen. Microbiol. 50, 399–412 (1968).

    Google Scholar 

  45. Rovira, A. D., Plant root exudates and their influence upon soil microorganisms. In Baker, K. F. and Snyder, W. C. (Eds.) Ecology of Soil-borne plant pathogens, 170–184, Murray, London, (1965).

    Google Scholar 

  46. Rovira, A. D., Newman, E. I., Bowen, H. J. and Campbell, R., Quantitative assessment of the rhizoplane microflora by direct microscopy. Soil Biol. Biochem. 6, 211–216 (1974).

    Google Scholar 

  47. Rowell, D. L., Martin, M. W. and Nye, P. H., The measurement and mechanism of ion diffusion in soils. III. The effect of moisture content and soil-solution concentration on the self-diffusion of ions in soils. J. Soil Sci. 18, 204–222 (1967).

    Google Scholar 

  48. Schultze, K. L. and Lipe, R. S., Relationship between substrate concentration, growth rate, and respiration rate of Escherichia coli in continuous culture. Arch. Mikrobiol. 48, 1–20 (1964).

    Google Scholar 

  49. Smith, W. H., Release of organic materials from the roots of tree seedlings. For. Sci. 15, 138–143 (1969).

    Google Scholar 

  50. Smith, W. H., Root exudates of seedling and mature sugar maple. Phytopathology 60, 701–703 (1970).

    Google Scholar 

  51. Starkey, R. L., Some influences of the development of higher plants upon the micro-organisms in the soil. IV. Influences of proximity of roots on abundance and activity of micro-organisms. Soil Sci. 32, 367–393 (1931).

    Google Scholar 

  52. Torssell, B. W. R., Begg, J. E., Rose, C. W. and Byrne, G. F., Stand morphology of Townsville lucerne (Stylosanthes humilis). Seasonal growth and root development. Aust. J. Exp. Agric. Anim. Husb. 8, 532–543 (1968).

    Google Scholar 

  53. Toussoun, T. A., Bega, R. V. and Nelson, P. E. (Eds.), Root Diseases and soilborne Pathogens. University of California Press, Berkeley (1970).

    Google Scholar 

  54. Trinci, A. P. J., A kinetic study of the growth of Aspergillus nidulans and other fungi. J. Gen. Microbiol. 57, 11–24 (1969).

    Google Scholar 

  55. Trinci, A. P. J., Influence of the width of the peripheral growth zone on the radial growth rate of fungal colonies on solid media. J. Gen. Microbiol. 67, 325–344 (1971).

    Google Scholar 

  56. Trinci, A. P. J., Culture turbidity as a measure of mould growth. Trans. Br. Mycol. Soc. 58, 467–473 (1972).

    Google Scholar 

  57. VanUden, N., Kinetics of nutrient-limited growth. Annu. Rev. Microbiol. 23, 473–486 (1969).

    Google Scholar 

  58. VanUden, N., Kinetics and energetics of yeast growth. In Rose, A. H. and Harrison, J. S. (Eds.), The Yeasts, Vol. 2, 75–118, Academic Press, London (1971).

    Google Scholar 

  59. Welbank, P. J., Gibb, M. J., Taylor, P. J. and Williams, E. D., Root growth of cereal crops. Rep. Rothamsted Exp. Stn. 1973, 26–66 (1974).

  60. Clark, F. E., Bacteria in soil. In Burges, N. A. and Raw, F. (Eds), Soil Biology, 15–49, Academic Press, London (1967).

    Google Scholar 

  61. Russell, E. W., Soil Conditions and Plant Growth. Longman, London (1973).

    Google Scholar 

  62. Ames, W. F., Numerical Methods for Partial Differential Equations, Nelson, London (1969).

    Google Scholar 

  63. Bellman, R. E. and Kabala, R. E., Quasilinearisation and Nonliear Boundary Value Problems, American Elsevier, New York (1965).

    Google Scholar 

  64. Crank, J., The Mathematics of Diffusion, Oxford University Press (1956).

Download references