link.springer.com

Genes for a second terminal oxidase in Bradyrhizobium japonicum - Archives of Microbiology

  • ️Hennecke, Hauke
  • ️Thu Oct 01 1992
  • Amersham International plc (1984) M13 cloning and sequencing handbook. Amersham, Buckinghamshire

  • Appleby CA (1969a) Electron transport systems of Rhizobium japonicum. 1. Haemoprotein P-450, other CO-reactive pigments, cytochromes and oxidases in bacteroids from N2-fixing root nodules. Biochim Biophys Acta 172: 71–87

    Google Scholar 

  • Appleby CA (1969b) Electron transport systems of Rhizobium japonicum. 2. Rhzobium haemoglobin, cytochromes and oxidases in free-living (cultured) cells. Biochim Biophys Acta 172: 88–105

    Google Scholar 

  • Appleby CA, James P, Hennecke H (1991) Characterization of three soluble c-type cytochromes isolated from soybean root nodule bacteroids of Bradyrhizobium japonicum strain CC705. FEMS Microbiol Lett 83: 137–144

    Google Scholar 

  • Bott M, Bolliger M, Hennecke H (1990) Genetic analysis of the cytochrome c-aa 3 branch of the Bradyrhizobium japonicum respiratory chain. Mol Microbiol 4: 2147–2157

    Google Scholar 

  • Bott M, Ritz D, Hennecke H (1991) The Bradyrhizobium japonicum cycM gene encodes a membrane-anchored homolog of mitochondrial cytochrome c. J Bacteriol 173: 6766–6772

    Google Scholar 

  • Chepuri V, Gennis RB (1990) The use of gene fusions to determine the topology of all of the subunits of the cytochrome o terminal oxidase complex of Escherichia coli. J Biol Chem 265: 12978–12986

    Google Scholar 

  • Chepuri V, Lemieux L, Au DCT, Gennis RB (1990) The sequence of the cyo operon indicates substantial structural similarities between the cytochrome o ubiquinol oxidase of Escherichia coli and the aa 3-type family of cytochrome c oxidases. J Biol Chem 265: 11185–11192

    Google Scholar 

  • Frustaci JM, Sangwan I, O'Brian MR (1991) Aerobic growth and respiration of δ-aminolevulinic acid synthase (hemA) mutant of Bradyrhizobium japonicum. J Bacteriol 173: 1145–1150

    Google Scholar 

  • Gabel C, Maier RJ (1990) Nucleotide sequence of the coxA gene encoding subunit I of cytochrome aa 3 of Bradyrhizobium japonicum. Nucleic Acids Res 18: 6143

    Google Scholar 

  • Gennis RB (1991) Some recent advances relating to prokaryotic cytochrome c reductases and cytochrome oxidases. Biochim Biophys Acta 1058: 21–24

    Google Scholar 

  • Grossberger D (1987) Minipreps of DNA from bacteriophage lambda. Nucleic Acids Res 15: 6737

    Google Scholar 

  • Guerinot ML, Chelm BK (1986) Bacterial δ-aminolevulinic acid synthase is not essential for leghemoglobin formation in the soybean/Bradyrhizobium japonicum symbiosis. Proc Natl Acad Sci USA 83: 1837–1841

    Google Scholar 

  • Hahn M, Hennecke H (1984) Localized mutagenesis in Rhizobium japonicum. Mol Gen Genet 193: 56–52

    Google Scholar 

  • Haltia T (1992) Reduction of CuA induces a conformational change in cytochrome c oxidase from Paracoccus denitrificans. Biochim Biophys Acta 1098: 343–350

    Google Scholar 

  • Haltia T, Finel M, Harms N, Nakari T, Raitio M, Wikström M, Saraste M (1989) Deletion of the gene for subunit III leads to defective assembly of bacterial cytochrome oxidase. EMBO J 8: 3571–3579

    Google Scholar 

  • Haltia T, Saraste M, Wikström M (1991) Subunit III of cytochrome c oxidase is not involved in proton translocation: a site-directed mutagenesis study. EMBO J 10: 2015–2021

    Google Scholar 

  • Holm L, Saraste M, Wikström M (1987) Structural models of the redox centres in cytochrome oxidase. EMBO J 6: 2819–2823

    Google Scholar 

  • Keister DL, Marsh SS (1990) Hemoproteins of Bradyrhizobium japonicum cultured cells and bacteroids. Appl Environ Microbiol 56: 2736–2741

    Google Scholar 

  • Lauraeus M, Haltia T, Saraste M, Wikström M (1991) Bacillus subtilis expresses two kinds of haem A-containing terminal oxidases. Eur J Biochem 197: 699–705

    Google Scholar 

  • Layzell DB, Hunt S, Moloney AHM, Fernando SM, Castillo LD del (1990) Physiological, metabolic and developmental implications of O2 regulation in legume nodules. In: Gresshoff PM, Roth LE, Stacey G, Newton WE (eds) Nitrogen fixation: achievements and objectives. Chapman and Hall, New York London, pp. 21–32

    Google Scholar 

  • Lemieux LJ, Calhoun MW, Thomas JW, Ingledew WJ, Gennis RB (1992) Determination of the ligands of the low spin heme of the cytochrome o ubiquinol oxidase complex using site-directed mutagenesis. J Biol Chem 267: 2105–2113

    Google Scholar 

  • Lübben M, Kolmerer B, Saraste M (1982) An archaebacterial terminal oxidase combines core structures of two mitochondrial respiratory complexes. EMBO J 11: 805–812

    Google Scholar 

  • Messing J (1983) New M13 vectors for cloning. Methods Enzymol 101: 20–78

    Google Scholar 

  • Minagawa J, Mogi T, Gennis RB, Anraku Y (1992) Identification of heme and copper ligands in subunit I of the cytochrome bo complex in Escherichia coli. J Biol Chem 267: 2096–2104

    Google Scholar 

  • Norrander J, Kempe T, Messing J (1983) Construction of improved M13 vectors using oligodeoxynucleotide-directed mutagenesis. Gene 26: 101–106

    Google Scholar 

  • Prentki P, Krisch HM (1984) In vitro insertional mutagenesis with a selectable DNA fragment. Gene 29: 303–313

    Google Scholar 

  • Puustinen A, Wikström M (1991) The heme groups of cytochrome o from Escherichia coli. Proc Natl Acad Sci USA 88: 6122–6126

    Google Scholar 

  • Puustinen A, Finel M, Haltia T, Gennis RB, Wikström M (1991) Properties of the two terminal oxidases of Escherichia coli. Biochemistry 30: 3936–3942

    Google Scholar 

  • Raitio M, Jalli T, Saraste M (1987) Isolation and analysis of the genes for cytochrome c oxidase in Paracoccus denitrificans. EMBO J 6: 2825–2833

    Google Scholar 

  • Ramseier TM, Göttfert M (1991) Codon usage and G+C content in Bradyrhizobium japonicum genes are not uniform. Arch Microbiol 156: 270–276

    Google Scholar 

  • Regensburger B, Hennecke H (1983) RNA polymerase from Rhizobium japonicum. Arch Microbiol 135: 103–109

    Google Scholar 

  • Rossbach S, Loferer H, Acuña G, Appleby CA, Hennecke H (1991) Cloning, sequencing and mutational analysis of the cytochrome c 552 gene (cycB) from Bradyrhizobium japonicum strain 110. FEMS Microbiol Lett 83: 145–152

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467

    Google Scholar 

  • Santana M, Kunst F, Hullo MF, Rapoport G, Danchin A, Glaser P (1992) Molecular cloning, sequencing and physiological characterization of the qox operon from Bacillus subtilis encoding the aa 3-600 quinol oxidase. J Biol Chem 267: 10225–10231

    Google Scholar 

  • Saraste M (1990) Structural features of cytochrome oxidase. Quart Rev Biophys 23: 331–366

    Google Scholar 

  • Saraste M, Holm L, Lemieux L, Lübben M, Oost J van der (1991a) The happy family of cytochrome oxidases. Biochem Soc Trans 19: 608–612

    Google Scholar 

  • Saraste M, Metso T, Nakari T, Jalli T, Lauraeus M, Oost J van der (1991b) The Bacillus subtilis cytochrome c oxidase. Eur J Biochem 195: 517–525

    Google Scholar 

  • Simon R, Priefer U, Pühler A (1983) Vector plasmids for in vivo and in vitro manipulation of Gram-negative bacteria. In: Pühler A (ed) Molecular genetics of the bacteria plant interaction. Springer, Berlin Heidelberg New York, pp 98–106

    Google Scholar 

  • Thöny-Meyer L, Stax D, Hennecke H (1989) An unusual gene cluster for the cytochrome bc 1 complex in Bradyrhizobium japonicum and its requirement for effective root nodule symbiosis. Cell 57: 683–697

    Google Scholar 

  • Tully RE, Sadowsky MJ, Keister DL (1991) Characterization of cytochrome c 550 and c 555 from Bradyrhizobium japonicum: cloning, mutagenesis, and sequencing of the c 555 gene (cycC). J Bacteriol 173: 7887–7895

    Google Scholar 

  • Williams HD, Appleby CA, Poole RK (1990) The unusual behaviour of the putative terminal oxidases of Bradyrhizobium japonicum bacteroids revealed by low-temperature photodissociation studies. Biochim Biophys Acta 1019: 225–232

    Google Scholar 

  • Witty JF, Minchin FR (1990) Oxygen diffusion in the legume root nodule. In: Gresshoff PM, Roth LE, Stacey G, Newton WE (eds) Nitrogen fixation: Achievements and objectives. Chapman and Hall, New York London, pp 285–292

    Google Scholar