link.springer.com

Histone acetylation: facts and questions - Chromosoma

  • ️Loidl, P.
  • ️Thu Dec 01 1994
  • Adams CC, Workman JL (1993) Nucleosome displacement in transcription. Cell 72:305–308

    Google Scholar 

  • Allfrey VG, Faulkner R, Mirsky AE (1964) Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci USA 51:786–794

    Google Scholar 

  • Aparicio OM, Billington BL, Gottschling DE (1991) Modifiers of position effect are shared between telomeric and silent mating-type loci in S. cerevisiae Cell 66:1279–1287

    Google Scholar 

  • Ausio J (1992) Structure and dynamics of transcriptionally active chromatin. J Cell Sci 102:1–5

    Google Scholar 

  • Ausio J, van Holde KE (1986) Histone hyperacetylation: Its effect on nucleosome conformation and stability. Biochemistry 25:1421–1428

    Google Scholar 

  • Baer BW, Rhodes D (1983) Eukaryotic RNA polymerase II binds to nucleosome cores from transcribed genes. Nature 301:482–488

    Google Scholar 

  • Bone JR, Lavender J, Richman R, Palmer MJ, Turner BM, Kuroda MI (1994) Acetylated histone H4 on the male X chromosome is associated with dosage compensation in Drosophila. Genes Dev 8:96–104

    Google Scholar 

  • Bradbury EM (1992) Reversible histone modifications and the chromosome cell cycle. BioEssays 14:9–16

    Google Scholar 

  • Braunstein M, Rose AB, Holmes SG, Allis CD, Broach JR (1993) Transcriptional silencing in yeast is associated with reduced nucleosome acetylation. Genes Dev 7:592–604

    Google Scholar 

  • Bresnick EH, John S, Berard DS, LeFebvre P, Hager GL (1990) Glucocorticoid receptor-dependent disruption of a specific nucleosome on the mouse mammary tumor virus promotor is prevented by sodium butyrate. Proc Natl Acad Sci USA 87:3977–3981

    Google Scholar 

  • Bresnick EH, John S, Hager GL (1991) Histone hyperacetylation does not alter the positioning or stability of phased nucleosomes on the mouse mammary tumor virus long terminal repeat. Biochemistry 30:3490–3497

    Google Scholar 

  • Brosch G, López-Rodas G, Golderer G, Lindner H, Gröbner P, Loidl P (1992a) Histone acetyltransferases and histone deacetylases of Physarum polycephalum. Cell Biol Int Rep 16:1103–1109

    Google Scholar 

  • Brosch G, Georgieva EI, López-Rodas G, Lindner H, Loidl P (1992b) Specificity of Zea mays histone deacetylase is regulated by phosphorylation. J Biol Chem 267:20561–20564

    Google Scholar 

  • Chen H, Li B, Workman JL (1994) A histone-binding protein, nucleoplasmin, stimulates transcription factor binding to nucleosomes and factor-induced nucleosome disassembly. EMBO J 13:380–390

    Google Scholar 

  • Clayton AL, Hebbes TR, Thorne AW, Crane-Robinson C (1993) Histone acetylation and gene induction in human cells. FEBS Lett 336:23–26

    Google Scholar 

  • Csordas A (1990) On the biological role of histone acetylation. Biochem J 265:23–38

    Google Scholar 

  • DeFazio A, Chiew Y-E, Donoghue C, Lee CSL, Sutherland RL (1992) Effect of sodium butyrate on estrogen receptor and epidermal growth factor receptor gene expression in human breast cancer cell lines. J Biol Chem 267:18008–18012

    Google Scholar 

  • Dingwall C, Dilworth SM, Black SJ, Kearsey SE, Cox LS, Laskey RA (1987) Nucleoplasmin cDNA sequence reveals polyglutamic acid tracts and a cluster of sequences homologous to putative nuclear localization signals. EMBO J 6:69–74

    Google Scholar 

  • Doenecke D, Gallwitz D (1982) Acetylation of histones in nucleosomes. Mol Cell Biochem 44:113–128

    Google Scholar 

  • Felsenfeld G (1992) Chromatin as an essential part of the transcriptional mechanism. Nature 355:219–224

    Google Scholar 

  • Georgieva E, López-Rodas G, Sendra R, Gröbner P, Loidl P (1991) Histone acetylation in Zea mays II. Biological significance of posttranslational histone acetylation during embryo germination. J Biol Chem 266:18751–18760

    Google Scholar 

  • Golderer G, Gröbner P (1991) ADP-ribosylation of core histones and their acetylated subspecies. Biochem J 277:607–610

    Google Scholar 

  • Grabher A, Brosch G, Sendra R, Lechner T, Eberharter A, Georgieva EI, López-Rodas G, Franco L, Dietrich H, Loidl P (1994) Subcellular location of enzymes involved in core histone acetylation. Biochemistry (in press)

  • Hebbes TR, Thorne AW, Clayton AL, Crane-Robinson C (1992) Histone acetylation and globin gene switching. Nucleic Acids Res 20:1017–1022

    Google Scholar 

  • Hebbes TR, Clayton AL, Thorne AW, Crane-Robinson C (1994) Core histone hyperacetylation co-maps with generalized DNa-seI sensitivity in the chicken β-globin chromosomal domain. EMBO J 13:1823–1830

    Google Scholar 

  • Hirschhorn JN, Brown SA, Clark CD, Winston F (1992) Evidence that SNF2/SWI2 and SNF5 activate transcription in yeast by altering chromatin structure. Genes Dev 6:2288–2298

    Google Scholar 

  • Ikegami S, Ooe Y, Shimizu T, Kasahara T, Tsuruta T, Kijima M, Yoshida M, Beppu T (1993) Accumulation of multiacetylated forms of histones by trichostatin A and its developmental consequences in early starfish embryos. Roux's Arch Dev Biol 202:144–151

    Google Scholar 

  • Jeppesen P, Turner BM (1993) The inactive X chromosome in female mammals is distinguished by a lack of histone H4 acetylation, a cytogenetic marker for gene expression. Cell 74:281–289

    Google Scholar 

  • Johnson LM, Kayne PS, Kahn ES, Grunstein M (1990) Genetic evidence for an interaction between SIR3 and histone H4 in the repression of the silent mating loci in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 87:6286–6290

    Google Scholar 

  • Johnston LA, Tapscott SJ, Eisen H (1992) Sodium butyrate inhibits myogenesis by interfering with the transcriptional activation function of MyoD and Myogenin. Mol Cell Biol 12:5123–5130

    Google Scholar 

  • Karlin S (1993) Unusual charge configurations in transcription factors of the basic RNA polymerase II initiation complex. Proc Natl Acad Sci USA 90:5593–5597

    Google Scholar 

  • Kruh J (1982) Effects of sodium butyrate, a new pharmacological agent, on cells in culture. Mol Cell Biochem 42:65–82

    Google Scholar 

  • Lang S, Decristoforo T, Waitz W, Loidl P (1993) Biochemical and morphological characterization of the nuclear matrix during the synchronous cell cycle of Physarum polycephalum. J Cell Sci 105:1121–1130

    Google Scholar 

  • Laurenson P, Rine J (1992) Silencers, silencing, and heritable transcriptional states. Microbiol Rev 56:543–560

    Google Scholar 

  • Lee DY, Hayes JJ, Pruss D, Wolffe AP (1993) A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell 72:73–84

    Google Scholar 

  • Li W, Nagaraya S, Delcuve GP, Hendzel MJ, Davie JR (1993) Effects of histone acetylation, ubiquitination and variants on nucleosome stability. Biochem J 296:737–744

    Google Scholar 

  • Loidl P (1988) Towards an understanding of the biological function of histone acetylation. FEBS Lett 227:91–95

    Google Scholar 

  • Loidl P, Gröbner P (1986) Biosynthesis and posttranslational acetylation of histones during spherulation of Physarum polycephalum. Nucleic Acids Res 14:3745–3762

    Google Scholar 

  • Loidl P, Gröbner P (1987) Postsynthetic acetylation of histones during the cell cycle: a general function for the displacement of histones during chromatin rearrangements. Nucleic Acids Res 15:8351–8366

    Google Scholar 

  • Loidl P, Loidl A, Puschendorf B, Gröbner P (1983) Lack of correlation between histone H4 acetylation and transcription during the Physarum cell cycle. Nature 305:446–448

    Google Scholar 

  • Loidl P, Lucchini R, Sogo JM (1992) Histone composition and core histone acetylation of transcriptionally active ribosomal chromatin of Physarum polycephalum. Cell Biol Int Rep 16:1177–1183

    Google Scholar 

  • López-Rodas G, Georgieva EI, Sendra R, Loidl P (1991a) Histone acetylation in Zea mays I. Activities of histone acetyltransferases and histone deacetylases. J Biol Chem 266:18745–18750

    Google Scholar 

  • López-Rodas G, Tordera V, Sánchez del Pino MM, Franco L (1991b) Subcellular localization and nucleosome specificity of yeast histone acetyltransferases. Biochemistry 30:3728–3732

    Google Scholar 

  • López-Rodas G, Brosch G, Golderer G, Lindner H, Gröbner P, Loidl P, (1992) Enzymes involved in the dynamic equilibrium of core histone acetylation of Physarum polycephalum. FEBS Lett 296:82–86

    Google Scholar 

  • López-Rodas G, Brosch G, Georgieva EI, Sendra R, Franco L, Loidl P (1993) Histone deacetylase — a key enzyme for the binding of regulatory proteins to chromatin. FEBS Lett 317:175–180

    Google Scholar 

  • Lutter LC, Judis L, Paretti RF (1992) Effects of histone acetylation on chromatin topology in vivo. Mol Cell Biol 12:5004–5014

    Google Scholar 

  • Mann RK, Grunstein M (1992) Histone H3 N-terminal mutations allow hyperactivation of the yeast GAL1 gene in vivo. EMBO J 11:3297–3306

    Google Scholar 

  • Magee PC, Morgan BA, Mittman BA, Smith MM (1990) Genetic analysis of histone H4: Essential role of lysines subject to reversible acetylation. Science 247:841–845

    Google Scholar 

  • Meistrich ML, Trostle-Weige PK, Lin R, Bhatnagar YM, Allis CD (1992) Highly acetylated H4 is associated with histone displacement in rat spermatids. Mol Reprod Dev 31:170–181

    Google Scholar 

  • Mingarro I, Sendra R, Salvador ML, Franco L (1993) Site specificity of pea histone acetyltransferase B in vitro. J Biol Chem 268:13248–13252

    Google Scholar 

  • Munks RJL, Moore J, O'Neill LP, Turner BM (1991) Histone H4 acetylation in Drosophila. FEBS Lett 284:245–248

    Google Scholar 

  • Norris D, Dunn B, Osley MA (1988) The effect of histone gene deletions on chromatin structure in Saccharomyces cerevisiae. Science 242:759–761

    Google Scholar 

  • Norton VG, Imai BS, Yau P, Bradbury EM (1989) Histone acetylation reduces nucleosome core particle linking number change Cell 57:449–457

    Google Scholar 

  • Norton VG, Marvin KW, Yau P, Bradbury EM (1990) Nucleosome linking number change controlled by acetylation of histones H3 and H4. J Biol Chem 265:19848–19852

    Google Scholar 

  • Ormandy CJ, de Fazio A, Kelly PA, Sutherland RL (1992) Transcriptional regulation of prolactin receptor gene expression by sodium butyrate in MCF-7 human breast cancer cells Endocrinology 131:982–984

    Google Scholar 

  • Palmer MJ, Mergner VA, Richman R, Manning JE, Kuroda MI, Lucchesi JC (1993) The male-specific leathal-one (msl-1) gene of Drosophila melanogaster encodes a novel protein that associates with the X chromosome in males. Genetics 134:545–557

    Google Scholar 

  • Park E-C, Szostak JW (1990) Point nutations in the yeast histone H4 gene prevent silencing of the silent mating type locus HML. Mol Cell Biol 10:4932–4934

    Google Scholar 

  • Perry M, Chalkley R (1982) Histone acetylation increases the solubility of chromatin and occurs sequentially over most of the chromatin. J Biol Chem 257:7336–7347

    Google Scholar 

  • Peterson CL, Herskowitz I (1992) Characterization of the yeast SWI1, SWI2, SWI3 genes, which encode a global activator of transcription. Cell 68:573–583

    Google Scholar 

  • Pineiro M, Hernandez F, Puerta C, Palacian E (1993) Transcription of mononucleosomal particles acetylated in the presence of n-butyrate. Mol Biol Rep 18:37–41

    Google Scholar 

  • Puerta C, Hernandez F, Gutierrez C, Pineiro M, Lopez-Alarcon L, Palacian E (1993) Efficient transcription of a DNA template associated with histone (H3–H4) tetramers. J Biol Chem 268:26663–26667

    Google Scholar 

  • Roberge M, O'Neill TE, Bradbury EM (1991) Inhibition of 5S RNA transcription in vitro by nucleosome cores with low or high levels of histone acetylation. FEBS Lett 288:215–218

    Google Scholar 

  • Simon H-U, Mills GB, Kozlowski M, Hogg D Branch D, Ishimi Y, Siminovitch KA (1994) Molecular characterization of hNRP, a cDNA encoding a human nucleosome-assembly-protein-I-related gene product involved in the induction of cell proliferation. Biochem J 297:389–397

    Google Scholar 

  • Sommerville J, Baird J, Tumer BM (1993) Histone H4 acetylation and transcription in amphibian chromatin. J Cell Biol 120:277–290

    Google Scholar 

  • Studitsky VM, Clark DJ, Felsenfeld G (1994) A histone octamer can step around a transcribing polymerase without leaving the template. Cell 76:371–382

    Google Scholar 

  • Swanson MS, Carlson M, Winston F (1990) SPT6, an essential gene that affects transcription in Saccharomyces cerevisiae, encodes a nuclear protein with an extremely acidic amino terminus. Mol Cell Biol 10:4935–4941

    Google Scholar 

  • Thoma F (1991) Structural changes in nucleosomes during transcription: strip, split or flip? Trends Genet 7:175–177

    Google Scholar 

  • Tordera V, Sendra R, Perez-Ortin JE (1993) The role of histones and their modifications in the informative content of chromatin. Experientia 49:780–788

    Google Scholar 

  • Turner BM (1993) Decoding the nucleosome. Cell 75:5–8

    Google Scholar 

  • Turner BM, Birley AJ, Lavender J (1992) Histone H4 isoforms acetylated at specific lysine residues define individual chromosomes and chromatin domains in Drosophila polytene nuclei. Cell 69:375–384

    Google Scholar 

  • Vettese-Dadey M, Walter P, Chen H, Juan L-J, Workman JL (1994) Role of the histone amino termini in facilitated binding of a transcription factor, GAL4-AH, to nucleosome cores. Mol Cell Biol 14:970–981

    Google Scholar 

  • Vogelstein B, Kinzler KW (1992) p53 function and dysfunction. Cell 70:523–526

    Google Scholar 

  • Wolffe AP (1994) Transcription: In tune with the histones. Cell 77:13–16

    Google Scholar 

  • Workman JL, Kingston RE (1992) Nucleosome core displacement in vitro via a metastable transcription factor-nucleosome complex. Science 258:1780–1784

    Google Scholar 

  • Yoshida M, Kijima M, Akita M, Beppu T (1990) Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by Trichostatin A. J Biol Chem 265:17174–17179

    Google Scholar