link.springer.com

Binding of sequences from the 5′- and 3′-nontranscribed spacers of the rat rDNA locus to the nucleolar matrix - Chromosoma

  • ️Avramova, Zoya
  • ️Mon Mar 01 1993
  • AdolphKW (1980) Organization of chromosomes in HeLa cells; Isolation of histone-depleted nuclei and nuclear scaffolds. J Cell Sci 42:291–304

    Google Scholar 

  • AgutterPS (1972) The isolation of the envelopes from rat liver nuclei. Biochim Biophys Acta 255:394–401

    Google Scholar 

  • ArisJB, BlobelG (1988) Identification and characterization of a yeast nucleolar protein that is similar to a rat liver nucleolar protein. J Cell Biol 107:17–31

    Google Scholar 

  • AvramovaZ, MikhailovI, TsanevR (1988) Metabolic behavior of a stable DNA-protein complex. Int J Biochem 20:61–65

    Google Scholar 

  • BerezneyR, CoffeyD (1974) Identification of a nuclear protein matrix. Biochem Biophys Res Commun 60: 1410–1417

    Google Scholar 

  • BerezneyR, CoffeyDS (1977) Nuclear matrix. Isolation and characterization of a framework structure from rat liver nuclei. J Cell Biol 73:616–637

    Google Scholar 

  • BodeJ, KohwiY, DickinsonL, JohT, KlehrD, MielkeC, Kohwi-ShigematsuT (1992) Biological significance of unwinding capability of nuclear matrix-associating DNAs. Science 255:195–197

    Google Scholar 

  • BodnarJW (1988) A domain model for eukaryotic DNA organization: a molecular basis for cell differentiation and chromosome evolution. J Theor Biol 132:479–507

    Google Scholar 

  • BollaRI, BraatenDC, ShiomiY, HerbertMB, SchlessingerD (1985) Location of specific rDNA spacer sequences to the mouse L-cell nucleolar matrix. Mol Cell Biol 6:1287–1294

    Google Scholar 

  • BourgeoisCA, BouvierD, SeveAP, HubertJ (1987) Evidence for the existence of a nuclear skeleton attached to the porecomplex lamina in human fibroblasts. Chromosoma 95:315–323

    Google Scholar 

  • BraatenDC, ThomasJR, LittleRD, DicksonKR, GoldbergI, SchlessingerD, CiccodiolaA, D'UrsoM (1988) Locations and context of sequences that hybridize to poly(dG-dT), (dC-dA) in mammalian ribosomal DNAs and two X-linked genes. Nucleic Acids Res 16:865–881

    Google Scholar 

  • BragaEA, AvdoninaTA, ZhurkinVB, NosikovVV (1985) Structural organization of rat ribosomal RNA genes: interspersed sequences and their putative role in the alignment of nucleosomes. Gene 36:249–262

    Google Scholar 

  • CockerillPN, GarrardWT (1986) Chromosomal loop anchorage of the k-immunoglobulin gene occurs next to the enhancer in a region containing topoisomerase II sites Cell 44:273–282

    Google Scholar 

  • CulottaV, Solner-WebbB (1988) Sites of topoisomerase I action on X. laevis ribosomal chromatin: transcriptionally active rDNA has an 200 bp repeating structure. Cell 52:585–597

    Google Scholar 

  • DavisAH, ReudelhuberTL, GarrardWT (1983) Variegated chromatin structures of mouse ribosomal RNA genes. J Mol Biol 167:133–155

    Google Scholar 

  • DickinsonLA, JohT, KohwiY, Kohwi-ShigematsuT (1992) A tissue-specific MAR/SAR DNA-binding protein with unusual binding site recognition. Cell 70:631–645

    Google Scholar 

  • FeyEG, KrochmalnicG, PennmanS (1986) The nonchromatin substructures of the nucleus: the ribonucleoprotein (RNP)-containing and (RNP)-depleted matrices analyzed by sequential fractionation and resinless section electron microscopy. J Cell Biol 102:1654–1665

    Google Scholar 

  • FrankeWW, KleinschmidtJA, SpringH, KrohneG, GrundC, TrendelenburgMF, StoehrN, ScheerU (1981) A nucleolar skeleton of protein filaments demonstrated in amplified nucleoli of X. laevis. J Cell Biol 90:289–299

    Google Scholar 

  • GajdardjievaKC, MarkovDV, DimovaRN, KermekchievMB, TodorovIT, DabevaMD, HadjiolovAA (1982) Isolation and initial characterization of nuclear fibrillar remnants from the liver of rats treated with d-galactozamin. Exp Cell Res 140:95–104

    Google Scholar 

  • GasserSM, LaemmliUK (1986) The organization of chromatin loops: characterization of a scaffold attachment site. EMBO J 5:511–517

    Google Scholar 

  • GoldmanMA (1988) The chromatin domain as a unit of gene regulation. BioEssays 9:50–55

    Google Scholar 

  • GrossDS, GarrardWT (1987) Poising chromatin for transcription. Trends Biochem Sci 12:293–297

    Google Scholar 

  • JacksonDA, McCreadySJ, CookPR (1981) RNA is synthesised at the nuclear cage. Nature 292:552–555

    Google Scholar 

  • JacksonDA, CookPR, PatelSB (1984) Attachment of repeated sequences to the nuclear cage. Nucleic Acids Res 12:6709–6726

    Google Scholar 

  • JamesGT, YeomanLC, MatsuiS, GoldbergAH, BuschH (1977) Isolation and characterization of nonhistone chromosomal protein C-14 which stimulates RNA synthesis. Biochemistry 16:2384–2389

    Google Scholar 

  • JordanEG (1984) Nucleolar nomenclature. J Cell Sci 67:217–220

    Google Scholar 

  • KasE, LaemmliUK (1992) In vivo topoisomerase II cleavage of Drosophila histone and satellite III repeats: DNA sequence and structural characteristics. EMBO J 11:705–716

    Google Scholar 

  • KaufmannSH, CoffeyDS, ShaperJH (1981) Considerations in the isolation of rat liver nuclear matrix, nuclear envelope and pore-complex lamina. Exp Cell Res 132:105–121

    Google Scholar 

  • KeppelF (1986) Transcribed human ribosomal RNA genes are attached to the nuclear matrix. J Mol Biol 187:15–21

    Google Scholar 

  • LaemmliUK (1972) Cleavage of structural proteins during the assembly of the head of the bacteriophage T4. Nature 227:680–685

    Google Scholar 

  • MarilleyM, Gassend-BonnetG (1989) Supercoiled loop organization of genomic DNA: a close relationship between loop domains expression units and replicon organization in rDNA from X. laevis. Exp Cell Res 180:475–489

    Google Scholar 

  • MillerOL, BakkenAH (1972) Morphological studies on transcription. Acta Endocrinol [Suppl] 168:155–173

    Google Scholar 

  • MillerTE, HuangCY, PogoAO (1978) Rat liver nuclear skeleton and ribonucleoprotein complexes containing hnRNA. J Cell Biol 76:675–691

    Google Scholar 

  • MirskyAE, RisH (1951) The composition and structure of isolated chromosomes. J Gen Physiol 34:475–492

    Google Scholar 

  • MountyKL, DounceAL (1958) The properties and the enzymatic degradation of deoxyribonucleoprotein from liver cell nuclei. J Gen Physiol 41:595–608

    Google Scholar 

  • MullerMT, PfundWP, MehtaVP, TraskDK (1985) Eukaryotic type I topoisomerase is enriched in the nucleolus and catalytically active on ribosomal DNA. EMBO J 4:1237–1243

    Google Scholar 

  • OchsRL, SmetanaK (1991) Detection of fibrillarin in nucleolar remnants and the nucleolar matrix. Exp Cell Res 197:183–190

    Google Scholar 

  • OlsonMOJ, WallaceMO, HerreraAH, Marshal-CarlsonL, HuntRC (1986) Preribosomal ribonucleoprotein particles are a major component of a nucleolar matrix fraction. Biochemistry 25:484–491

    Google Scholar 

  • PardollDM, VogelsteinB (1980) Sequence analysis of nuclear matrix associated DNA from rat liver. Exp Cell Res 128:466–470

    Google Scholar 

  • RoseKM, SzopaJ, HanF-S, ChengY-C, RichterA, ScheerU (1988) Association of DNA topoisomerase I and polymerase I: a possible role for topoisomerase I in ribosomal gene transcription. Chromosoma 96:411–416

    Google Scholar 

  • RothblumLI, MamrakPM, KunkleHM, OlsonOJ, BushH (1977) Fractionation of nucleoli. Enzymatic and two-dimensional polyacrylamide gel electrophoresis. Biochemistry 16:4716–4721

    Google Scholar 

  • ShiomiY, PoweresJ, BollaRI, NguyenTV, SchlessingerD (1986) Proteins and RNA in mouse L cell core nucleoli and nucleolar matrix. Biochemistry 25:5745–5751

    Google Scholar 

  • SmithHC, RothblumLI (1987) Ribosomal DNA sequences attached to the nuclear matrix. Biochem Genet 25:863–879

    Google Scholar 

  • SmithHC, OchsRL, LinD, ChinaultAC (1987) Ultrastructural and biochemical comparison of nuclear matrices prepared by high salt or LIS extraction. Mol Cell Biochem 77:49–61

    Google Scholar 

  • StephanovaE (1989) A method for the isolation of nucleoli from mouse liver. C R Acad Sci Bulg 42:123–126

    Google Scholar 

  • StephanovaE, ValkovN (1990) Rat liver nucleoli: characterization of the residual skeletal structure. C R Acad Sci Bulg 43:87–90

    Google Scholar 

  • StephanovaE, ValkovN (1991) Rat liver nucleoli: biochemical characterization of the residual skeletal structure. C R Acad Sci Bulg 44:63–66

    Google Scholar 

  • ThomasJR, BollaRI, RumbyrtJS, SchlessingerD (1985) DNase I resistant nontranscribed spacer segments of mouse ribosomal DNA contain poly(gD-dI), poly(dA-dC). Proc Natl Acad Sci USA 82:7595–7598

    Google Scholar 

  • TsanevR, AvramovaZ (1981) Nonprotamine nucleoprotein ultrastructures in mature ram sperm nuclei. Eur J Cell Biol 24:139–145

    Google Scholar 

  • VerheijenR, van VenrooijW, RamaekersF (1988) The nuclear matrix: structure and composition. J Cell Sci 90:11–36

    Google Scholar 

  • YavachevLP, GeorgievOI, BragaEA, AvdoninaTA, ZhurkinVB, NosikovVV, HadjiolovAA (1986) Nucleotide sequence analysis of the spacer regions flanking the rat rRNA transcript unit and identification of repetitive elements. Nucleic Acids Res 14:2799–2810

    Google Scholar 

  • ZhangH, WangJ, LiuLF (1988) Involvement of topoisomerase i in transcription of human ribosomal RNA genes. Proc Natl Acad Sci USA 85:1060–1064

    Google Scholar