link.springer.com

Compartmentation of alpha-internexin and neurofilament triplet proteins in cultured hippocampal neurons - Brain Cell Biology

  • ️Banker, Gary
  • ️Mon Jan 01 1996

References

  • Allende, M. L., Krauss, R. Y., Tremblay, C., Alvarez, J. &Inestrosa, N. C. (1989) Anti-200 kDa neurofilament antibody cross-reacts with microtubuleassociated protein-2 (MAP-2).Journal of Neuroscience Research 22, 130–3.

    Google Scholar 

  • Balkema, G. W. &Dräger, U. C. (1985) Light dependent antibody labelling of photoreceptors.Nature 316, 630–3.

    Google Scholar 

  • Bennett, G. S. (1987) Changes in intermediate filament composition during neurogenesis.Current Topics in Developmental Biology 21, 151–83.

    Google Scholar 

  • Benson, D. L., Huntsman, M. M. &Jones, E. G. (1944a) Activity-dependent changes in GAD and preprotachykinin mRNAs in visual cortex of adult monkeys.Cerebral Cortex 4, 40–51.

    Google Scholar 

  • Benson, D. L., Watkins, F. H., Steward, O. &Banker, G. (1994b) Characterization of GABAergic neurons in hippocampal cell cultures.Journal of Neurocytology 23, 279–95.

    Google Scholar 

  • Binder, L. I., Frankfurter, A. &Rebhun, L. I. (1986) Differential localization of MAP2 and tau in mammalian neuronsin situ.Annals of the New York Academy of Sciences 466, 145–67.

    Google Scholar 

  • Black, M. M. &Lee, V. M. (1988) Phosphorylation of neurofilament proteins in intact neurons: demonstration of phosphorylation in cell bodies and axons.Journal of Neuroscience 8, 3296–305.

    Google Scholar 

  • Bottenstein, J. E. &Sato, G. E. (1979) Growth of a rat neuroblastoma cell line in serum-free supplemented medium.Proceedings of the National Academy of Sciences (USA) 76, 514–9.

    Google Scholar 

  • Brody, B. A., Ley, C. A. &Parysek, L. M. (1989) Selective distribution of the 57 kDa neural intermediate filament protein in the rat CNS.Journal of Neuroscience 9, 2391–401.

    Google Scholar 

  • Caceres, A., Payne M. R., Binder, L. I. &Steward, O. (1983) Immunocytochemical localization of actin and microtubule-associated protein MAP2 in dendritic spines.Proceedings of the National Academy of Sciences (USA) 80, 1738–42.

    Google Scholar 

  • Carden, M. J., Trojanowski, J. Q., Schlaepfer, W. W. &Lee, V. M.-Y. (1987) Two-stage expression of neurofilament polypeptides during rat neurogenesis with early establishment of adult phosphorylation patterns.Journal of Neuroscience 7, 3489–504.

    Google Scholar 

  • Ching, G. &Liem, R. (1993) Assembly of type IV neuronal intermediate filaments in nonneuronal cells in the absence of preexisting cytoplasmic intermediate filaments.Journal of Cell Biology 122, 1323–35.

    Google Scholar 

  • Chiu, F.-C., Barnes, E. A., Das, K., Haley, J., Socolow, P., Macaluso, F. P. &Fant, J. (1989) Characterization of a novel 66 kd subunit of mammalian neurofilaments.Neuron 2, 1435–45.

    Google Scholar 

  • Cleveland, D. W., Monteiro, M. J., Wong, P. C., Gill, S. R., Gearhart, J. D. &Hoffman, P. N. (1991) Involvement of neurofilaments in the radial growth of axons.Journal of Cell Science 15, 86–95.

    Google Scholar 

  • Cochard, P. &Paulin, D. (1984) Initial expression of neurofilaments and vimentin in the central and peripheral nervous system of the mouse embryoin vivo.Journal of Neuroscience 4, 2080–94.

    Google Scholar 

  • Cohen, R. S., Chung, S. K. &Pfaff, D. W. (1985) Immunocytochemical localization of actin in dendritic spines of the cerebral cortex using colloidal gold as a probe.Cellular and Molecular Neurobiology 5, 271–84.

    Google Scholar 

  • Craig, A. M., Blackstone, C. D., Huganir, R. L. &Banker, G. (1993) The distribution of glutamate receptors in clutured rat hippocampal neurons: postsynaptic clustering of AMPA-selective subunits.Neuron 10, 1055–68.

    Google Scholar 

  • Dahl, D. &Bignami, A. (1985) Neurofilament phosphorylation in development.Experimental Cell Research 162, 220–30.

    Google Scholar 

  • Denny, J. B. (1991) MAP5 in cultured hippocampal neurons: expression diminishes with time and growth cones are not immunostained.Journal of Neurocytology 20, 627–36.

    Google Scholar 

  • Djabali, K., Zissopoulou, A., De Hoop, M. J., Georgatos, S. D. &Dotti, C. G. (1993) Peripherin expression in hippocampal neurons induced by muscle soluble factor(s).Journal of Cell Biology 123, 1197–206.

    Google Scholar 

  • Dong, D. L., Xu, Z. S., Chevrier, M. R., Cotter, R. J., Cleveland, D. W. &Hart, G. W. (1993) Glycosylation of mammalian neurofilaments. Localization of multiple O-linked N-acetylglucosamine moieties on neurofilament polypeptides L and M.Journal of Biological Chemistry 268, 16679–87.

    Google Scholar 

  • Dotti, C. G., Sullivan, C. A. &Banker, G. A. (1988) The establishment of polarity by hippocampal neurons in culture.Journal of Neuroscience 8, 1454–68.

    Google Scholar 

  • Errante, L. D., Wiche, G. &Shaw G. (1994) Distribution of plectin, an intermediate filament-associated protein, in the adult rat central nervous system.Journal of Neuroscience Research 37, 515–28.

    Google Scholar 

  • Esch, T., Jareb, M. &Banker, G. (1993) The distribution of L1 and the polysialylated form of N-CAM during the development of hippocampal neurons in culture.Society for Neuroscience Abstracts 19, 459.

    Google Scholar 

  • Escurat M., Djabali, K., Gumpel, M., Gros, F. &Portier, M.-M. (1990) Differential expression of two neuronal intermediate-filament proteins, peripherin and the low-molecular-mass neurofilament protein (NF-L), during the development of the rat.Journal of Neuroscience 10, 764–84.

    Google Scholar 

  • Eyer, J. &Peterson, A. (1994) Neurofilament-deficient axons and perikaryal aggregates in viable transgenic mice expressing a neurofilament β-galactosidase fusion protein.Neuron 12, 389–405.

    Google Scholar 

  • Fischer, I. &Romano-Clarke, G. (1990) Changes in microtubule-associated protein MAP1B phosphorylation during rat brain development.Journal of Neurochemistry 55, 328–33.

    Google Scholar 

  • Fliegner, K. H., Ching, G. Y. &Liem, R. K. H. (1990) The predicted amino acid sequence of α-internexin is that of a novel neuronal intermediate filament proteinEMBO Journal 9, 749–55.

    Google Scholar 

  • Fliegner, K. H., Kaplan, M. P., Wood, T. L., Pintar, J. E. &Liem, R. K. H. (1994) Expression of the gene for the neuronal intermediate filament protein α-internexin coincides with the onset of neuronal differentiation in the developing rat nervous system.Journal of Comparative Neurology 342, 161–73.

    Google Scholar 

  • Foster, G. A., Dahl, D. &Lee, V. M.-Y. (1987) Temporal and topographic relationships between the phosphorylated and nonphosphorylated epitopes of the 200 kDa neurofilament protein during developmentin vitro.Journal of Neuroscience 7, 2651–63.

    Google Scholar 

  • Garner, C. C., Garner, A., Huber, G., Kozak, C. &Matus, A. (1990) Molecular cloning of microtubuleassociated protein 1 (MAP1A) and microtubule-associated protein 5 (MAP 1B): identification of distinct genes and their differential expression in developing brain.Journal of Neurochemistry 55, 146–54.

    Google Scholar 

  • Goldstein, M. E., Sternberger, N. H. &Sternberger, L. A. (1988) Phosphorylation protects neurofilaments from proteolysis.Journal of Neuroimmunology 14, 149–60.

    Google Scholar 

  • Goslin, K. &Banker, G. (1991) Rat hippocampal neurons in low density culture. InCulturing Nerve Cells (edited byBanker, G. &Goslin, K.) pp. 251–82. Cambridge: MIT Press.

    Google Scholar 

  • Halpain, S. &Greengard, P. (1990) Activation of NMDA receptors induces rapid dephosphorylation of the cytoskeletal protein MAP2.Neuron 5, 237–46.

    Google Scholar 

  • Harris, J., Ayyub, C. &Shaw, G. (1991) A molecular dissection of the carboxyterminal tails of the major neurofilament subunits NF-M and NF-H.Journal of Neuroscience Research 30, 47–62.

    Google Scholar 

  • Harris, J., Moreno, S., Shaw, G. &Mugnaini, E. (1993) Unusual neurofilament composition in cerebellar unipolar brush neurons.Journal of Neurocytology 22, 1039–59.

    Google Scholar 

  • Harry, J. G., Goodrum, J. F. &Morell, P. (1985) The postnatal development of glial fibrillary acidic protein and neurofilament triplet proteins in rat brain stem.International Journal of Developmental Neuroscience 3, 349–52.

    Google Scholar 

  • Heimann, R., Shelanski, M. L. &Liem, R. K. H. (1985) Specific binding of microtubule-associated proteins to the 70000 dalton neurofilament subunit.Journal of Biological Chemistry 260, 2160–66.

    Google Scholar 

  • Hisanaga, S.-H. &Hirokawa, N. (1989) Structure of the peripheral domains of neurofilaments revealed by low angle rotary shadowing.Journal of Molecular Biology 202, 297–305.

    Google Scholar 

  • Huntley, G. W., Vickers, J. C., Janssen, W., Brose, N., Heinemann, S. F. &Morrison, J. H. (1994) Distribution and synaptic localization of immunocytochemically identified NMDA receptor subunit proteins in the sensory-motor cortex and visual cortices of monkey and human.Journal of Neuroscience 14, 3603–19.

    Google Scholar 

  • Kaplan, M. P., Chin, S. S. M., Fliegner, K. H. &Liem, R. K. H. (1990) α-Internexin, a novel neuronal intermediate filament protein, precedes the low molecular weight neurofilament protein (NF-L) in the developing rat brain.Journal of Neuroscience 10, 2735–48.

    Google Scholar 

  • Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature 227, 680–5.

    Google Scholar 

  • Lafont, F., Rouget, M., Triller, A., Prochiantz A. &Rousselet A. (1992)In vitro control of neuronal polarity by glycosaminoglycans.Development 114, 17–29.

    Google Scholar 

  • Landis, D. M. D. &Reese, T. S. (1983) Cytoplasmic organization in cerebellar dendritic spines.Journal of Cell Biology 97, 1169–78.

    Google Scholar 

  • Lee, V. M.-Y., Page, C. D., Wu, H.-L. &Schlaepfer, W. W. (1984) Monoclonal antibodies to gel excised glial filament protein and their reactivity with other intermediate filament proteins.Journal of Neurochemistry 42, 25–32.

    Google Scholar 

  • Lee, V. M.-Y., Carden, M. J., Schlaepfer, W. W. &Trojanowski, J. Q. (1987) Monoclonal antibodies distinguish several differentially phosphorylated states of the two largest rat neurofilament subunits (NF-H and NF-M) and demonstrate their existence in the normal nervous system of adult rats.Journal of Neuroscience 7, 3474–88.

    Google Scholar 

  • Lee, M., Xu, Z., Wong, P. &Cleveland, D. (1993) Neurofilaments are obligate heteropolymersin vivo.Journal of Cell Biology 122, 1337–50.

    Google Scholar 

  • Lemmon, V. &McLoon, S. (1986) The appearance of an L1-like molecule in the chick primary visual pathway.Journal of Neuroscience 6, 2987–94.

    Google Scholar 

  • Lendahl, U., Zimmerman, L. B. &McKay, R. D. G. (1990) CNS stem cells express a new class of intermediate filament protein.Cell 60, 585–95.

    Google Scholar 

  • Leonard, D. G. B., Gorham, J. D., Cole, P., Greene, L. A. &Ziff, E. B. (1988) A nerve growth factor-regulated messenger RNA encodes a new intermediate filament protein.Journal of Cell Biology 106, 181–93.

    Google Scholar 

  • Luca, F. C., Bloom, G. S. &Vallee, R. B. (1986) A monoclonal antibody that cross-reacts with phosphorylated epitopes on two microtubule-associated proteins and two neurofilament polypeptides.Proceedings of the National Acadamy of Sciences (USA) 83, 1006–10.

    Google Scholar 

  • Matus, A. I., Ackermann M., Pehling, G., Randolph Byers, H. &Fujiwara, K. (1982) High actin concentrations in brain dendritic spines and postsynaptic densities.Proceedings of the National Acadamy of Sciences (USA) 79, 7590–4.

    Google Scholar 

  • Miller, C. C. J., Brion, J.-P., Calvert, R., Chin, T.-K., Eagles, P. A. M., Downes, M. J., Flament-Durand, J., Haugh, M., Kahan, J., Probst, A., Ulrich, J. &Anderton, B. H. (1986) Alzheimer's paired helical filaments share epitopes with neurofilament side arms.EMBO Journal 5, 269–76.

    Google Scholar 

  • Nixon, R. A. &Sihag, R. K. (1991) Neurofilament phosphorylation: a new look at regulation and function.Trends in Neuroscience 14, 501–6.

    Google Scholar 

  • Okabe, S., Miyasaka, H. &Hirokawa, N. (1993) Dynamics of the neuronal intermediate filaments.Journal of Cell Biology 121, 375–86.

    Google Scholar 

  • Otvos, L., Hollosi, M., Perczel, A., Dietzschold, B. &Fasman, G. D. (1988) Phosphorylation loops in synthetic peptides of the human neurofilament protein middle sized subunit.Journal of Protein Chemistry 7, 365–76.

    Google Scholar 

  • Pachter, J. S. &Liem, R. K. H. (1984) The differential appearance of neurofilament triplet polypeptides in the developing rat optic nerve.Developmental Biology 103, 200–10.

    Google Scholar 

  • Pachter, J. S. &Liem, R. K. H. (1985) Alpha-internexin, a 66kDa intermediate filament-binding protein from mammalian central nervous tissues.Journal of Cell Biology 101, 1316–22.

    Google Scholar 

  • Papa, M., Bundman, M. C., Greenberger, V. &Segal, M. (1995) Morphological analysis of dendritic spine development in primary cultures of hippocampal neurons.Journal of Neuroscience 15, 1–11.

    Google Scholar 

  • Parysek, L. M., Chisholm, R. L., Ley, C. A. &Goldman, R. D. (1988) A type III intermediate filament gene is expressed in mature neurons.Neuron 1, 395–401.

    Google Scholar 

  • Parysek, L. M., McReynolds, M. A., Goldman, R. D. &Ley, C. A. (1991) Some neural intermediate filaments contain both peripherin and the neurofilament proteins.Journal of Neuroscience Research 30, 80–91.

    Google Scholar 

  • Pennypacker, K., Fischer, I. &Levitt, P. (1991) Earlyin vitro genesis and differentiation of axons and dedrites by hippocampal neurons analyzed quantitatively with neurofilament-H and microtubule-associated protein 2 antibodies.Experimental Neurology 111, 25–35.

    Google Scholar 

  • Persohn, E. &Schachner, M. (1990) Immunohistological localization of the neural adhesion molecules L1 and N-CAM in the developing hippocampus of the mouse.Journal of Neurocytology 19, 807–19.

    Google Scholar 

  • Peters, A., Palay, S. L. &Webster, H. D. (1991) Dendrites. InThe Fine Structure of the Nervous System, pp. 70–100. New York: Oxford University Press.

    Google Scholar 

  • Portier, M. M., Brachet, P., Croizat, B. &Gros, F. (1984a) Regulation of peripherin in mouse neuroblastoma and rat PC12 pheochromocytoma cell lines.Developmental Neuroscience 6, 215–26.

    Google Scholar 

  • Portier, M. M., Nechaud, B. &Gros, F. (1984b) Peripherin, a new member of the intermediate filament protein family.Developmental Neuroscience 6, 335–44.

    Google Scholar 

  • Riederer, B., Cohen, R. &Matus, A. (1986) MAP5: a novel brain microtubule-associated protein under strong developmental regulation.Journal of Neurocytology 15, 763–75.

    Google Scholar 

  • Riederer, B. M., Guadano-Ferraz, A. &Innocenti, G. M. (1990) Difference in distribution of microtubule-associated proteins 5a and 5b during the development of cerebral cortex and corpus callosum in cats: dependence on phosphorylation.Developmental Brain Research 56, 235–43.

    Google Scholar 

  • Schlaepfer, W. W. &Bruce, J. (1990) Simultaneous upregulation of neurofilament proteins during the postnatal development of the rat nervous system.Journal of Neuroscience Research 25, 39–49.

    Google Scholar 

  • Shaw, G. (1991) Neurofilament Proteins. InThe Neuronal Cytoskeleton (edited byBurgoyne, R.D.) pp. 185–214. New York: Wiley-Liss, Inc.

    Google Scholar 

  • Shaw, G. &Weber, K. (1982) Differential expression of neurofilament triplet proteins in brain development.Nature 298, 277–9.

    Google Scholar 

  • Shaw, G. &Weber, K. (1984) The intermediate filament complement of the retina: a comparison between different mammalian species.European Journal of Cell Biology 33, 95–104.

    Google Scholar 

  • Shaw, G., Banker, G. A. &Weber, K. (1985) An immunofluorescence study of neurofilament protein expression by developing hippocampal neurons in tissue culture.European Journal of Cell Biology 39, 205–16.

    Google Scholar 

  • Shaw, G., Osborn, M. &Weber, K. (1986) Reactivity of a panel of neurofilament antibodies on phosphorylated and dephosphorylated neurofilaments.European Journal of Cell Biology 42, 1–9.

    Google Scholar 

  • Sternberger, L. A. &Sternberger, N. H. (1983) Monoclonal antibodies distinguish phosphorylated and non-phosphorylated forms of neurofilamentin situ.Proceedings of the National Academy of Sciences (USA) 80, 6126–30.

    Google Scholar 

  • Szaro, B. G., Lee, V. M.-Y. &Gainer, H. (1989) Spatial and temporal expression of phosphorylated and nonphosphorylated forms of neurofilament protein in the developing nervous system ofXenopus laevis.Developmental Brain Research 48, 87–103.

    Google Scholar 

  • Szaro, B. G., Grant, P., Lee, V. M.-Y. &Gainer, H. (1991) Inhibition of axonal development after injection of neurofilament antibodies intoXenopus laevis embryo.Journal of Comparative Neurology 308, 576–85.

    Google Scholar 

  • Takeda, S., Okabe, S., Funakoshi, T. &Hirokawa, N. (1994) Differential dynamics of neurofilament-H protein and neurofilament-L protein in neurons.Journal of Cell Biology 127, 173–85.

    Google Scholar 

  • Towbin, H., Staehelin, T. &Gordon, J. (1979) Electorphoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedures and some applications.Proceedings of the National Academy of Sciences (USA) 76, 4350–4.

    Google Scholar 

  • Viereck, C. &Matus, A. (1990) The expression of phosphorylated and non-phosphorylated forms of MAP5 in the amphibian CNS.Brain Research 508, 257–64.

    Google Scholar 

  • Willard, M. B. &Simon, C. (1983) Modulations of neurofilament axonal transport during the development of rabbit retinal ganglion cellsCell 35, 551–9.

    Google Scholar 

  • Wood, J. N., Lathangue, N. B., McLachlan, D. R., Smith, B. J., Anderton, B. H. &Dowding, A. J. (1985) Chromatin proteins share antigenic determinants with neurofilaments.Journal of Neurochemistry 44, 149–54.

    Google Scholar 

  • Yamasaki, H. &Itakura, C. M., M. (1991) Hereditary hypotrophic axonopathy with neurofilament deficiency in a mutant strain of the Japanese quail.Acta Neuropathologica 82, 427–34.

    Google Scholar 

Download references