link.springer.com

Inclusive fitness arguments in genetic models of behaviour - Journal of Mathematical Biology

  • ️Taylor, Peter D.
  • ️Wed May 01 1996
  • Abrams, P. A., Matsuda, H. and Harada, Y. 1993. Evolutionarily unstable fitness maxima and stable fitness minima of continuous traits. Evol. Ecol.7: 465–487.

    Article  Google Scholar 

  • Bulmer, M. G. 1986. Sex ratio theory in geographically structured populations, Heredity56: 69–73.

    Google Scholar 

  • Charlesworth, B. 1980a. Models of kin selection. In: Evolution of Social Behaviour: Hypotheses and Empirical Tests, (ed. H. Markl), Verlag Chemie, Weinheim.

    Google Scholar 

  • Charlesworth, B. 1980b. Evolution in age-structured populations. Cambridge Studies in Mathematical Biology, Cambridge Univ. Press

  • Charnov, E. L. 1977. An elementary treatment of the genetical theory of kin selection, J. Theor. Biol.66: 541–550

    Article  Google Scholar 

  • Christiansen, F. B. 1991. On conditions for evolutionary stability for a continuously varying character, Amer. Nat.138: 37–50

    Article  Google Scholar 

  • Crow J. F. and Kimura M. 1970. An Introduction to Population Genetics Theory, New York: Harper and Row

    Google Scholar 

  • Eshel, I. 1983. Evolutionary and continuous stability, J. Theor. Biol.103, 99–111

    Article  MathSciNet  Google Scholar 

  • Eshel, I, and Motro, U. 1981. Kin selection and strong evolutionary stability of mutual help, Theor. Pop. Biol.19, 420–433

    Article  MathSciNet  Google Scholar 

  • Forsyth, A. 1981. Sex ratio and parental investment in an ant population. Evolution36: 1252–1253

    Article  Google Scholar 

  • Frank, S. A. 1986. Hierarchical selection theory and sex ratios. I. General solutions for structured populations, Theor. Pop. Biol.29: 312–342

    Article  MATH  Google Scholar 

  • Grafen, A. 1984. Natural, kin and group selection, in Behavioural Ecology, An Evolutionary Approach (J. R. Krebs and N. B. Davies, eds) 62–84. Sinauer

  • Grafen, A. 1985a. A geometric view of relatedness, Oxford Surveys in Evolutionary Biology2: 28–89

    Google Scholar 

  • Grafen, A. 1985b. Hamilton's rule OK, Nature318: 310–311

    Article  Google Scholar 

  • Hamilton, W. D. 1964. The genetical evolution of social behaviour, I and II, J. Theor. Biol.7: 1–52

    Article  Google Scholar 

  • Hamilton, W. D. 1970. Selfish and spiteful behaviour in an evolutionary model, Nature (Lond.)228: 1218–1220

    Article  Google Scholar 

  • Hamilton, W. D. 1972. Altruism and related phenomena, mainly in social insects, Ann. Rev. Ecol. Syst.3: 192–232

    Article  Google Scholar 

  • Hamilton, W. D. 1975. Innate social aptitudes of man: an approach from evolutionary biology. In: Biosocial Anthropology (R. Fox, ed.) pp 133–155. New York: John Wiley and sons

    Google Scholar 

  • Iwasa, Y. 1981. Role of sex ratio in the evolution of eusociality in haplodiploid social insects, J. theor. Biol.93: 125–142

    Article  Google Scholar 

  • Jacquard, A. 1974. The Genetic Structure of Populations (trans. D. and B. Charlesworth) Biomathematics Series 5, Springer, New York

    Google Scholar 

  • Leslie, P. H. 1948. Some further remarks on the use of matrices in population mathematics, Biometrika35: 213–245

    Article  MATH  MathSciNet  Google Scholar 

  • Maynard Smith, J. 1974. The theory of games and the evolution of animal conflicts, J. theor. Biol.47: 209–221

    Article  MathSciNet  Google Scholar 

  • Maynard Smith, J. and Price, G. R., 1973. The logic of animal conflict. Nature246: 15–18

    Article  Google Scholar 

  • Metz, J. A. J., R. M. Nisbet and Geritz, S. A. H. 1992. How should we define ‘fitness’ for general ecological scenarios? TREE7:198–202

    Google Scholar 

  • Michod, R. E. and Hamilton, W. D. 1980. Coefficients, of relatedness in sociobiology, Nature288: 694–697

    Article  Google Scholar 

  • Pamilo, P. and Crozier, R. H. 1982. Measuring genetic relatedness in natural populations: methodology. Theor. Pop. Biol.21: 171–193

    Article  Google Scholar 

  • Price, G. R. 1970. Selection and covariance, Nature227: 520–521

    Article  Google Scholar 

  • Queller, D. C. 1985. Kinship, reciprocity and synergism in the evolution of social behaviour, Nature318: 366–367

    Article  Google Scholar 

  • Seger, J. 1981. Kinship and covariance, J. theor. Biol.91: 191–213

    Article  MathSciNet  Google Scholar 

  • Taylor, P. D. 1981. Sex ratio compensation in ant populations. Evolution35: 1250–1251

    Article  Google Scholar 

  • Taylor, P. D. 1988a. An inclusive fitness model for dispersal of offspring, J. theor. Biol.130: 363–378

    Google Scholar 

  • Taylor, P. D. 1988b. Inclusive fitness models with two sexes. Theor. Pop. Biol.34: 145–168

    Article  MATH  Google Scholar 

  • Taylor, P. D. 1989. Evolutionary stability in one-parameter models under weak selection, Theor. Pop. Biol.36: 125–143

    Article  MATH  Google Scholar 

  • Taylor, P. D. 1990. Allele frequency change in a class-structured population, American Naturalist135: 95–106

    Article  Google Scholar 

  • Taylor, P. D. and Getz, W. M. 1994. An inclusive fitness model for the evolutionary advantage of sib-mating. Evol. Ecol. 8: 61–69

    Article  Google Scholar 

  • Taylor, P. D. and Frank, S. A. 1996. How to make a kin selection model. J. theor. Biol. (in press)

  • van Tienderen, P. H. and De Jong, D. 1986. Sex ratio under the haystack model: polymorphism may occur. J. theor. Biol.122: 69–81

    Google Scholar