link.springer.com

Biometrics, biomathematics and the morphometric synthesis - Bulletin of Mathematical Biology

  • ️Bookstein, Fred L.
  • ️Fri Mar 01 1996
  • Andreasen, N., S. Arndt, V. Swayze, T. Cizadlo, M. Flaum, D. O'Leary, J. Ehrhardt and W. Yuh. 1994. Thalamic abnormalities in schizophrenia visualized through magnetic resonance image averaging.Science 266, 294–298.

    Google Scholar 

  • Blackith, R. and R. Reyment. 1971.Multivariate Morphometrics. New York: Academic Press.

    MATH  Google Scholar 

  • Bookstein, F. L. 1978.The Measurement of Biological Shape and Shape Change.Lecture Notes in Biomathematics, Vol. 24. New York: Springer.

    MATH  Google Scholar 

  • Bookstein, F. L. 1982a. On the cephalometrics of skeletal change.Amer. J. Orthodontics 82, 177–198.

    Article  Google Scholar 

  • Bookstein, F. L. 1982b. Foundations of morphometrics.Ann. Rev. Ecology and Systematics 13, 451–470.

    Article  Google Scholar 

  • Bookstein, F. L. 1984a. A statistical method for biological shape comparisons.J. Theor. Biol. 107, 475–520.

    Article  Google Scholar 

  • Bookstein, F. L. 1984b. Tensor biometrics for changes in cranial shape.Ann. Human Biol. 11, 413–437.

    Article  Google Scholar 

  • Bookstein, F. L. 1986. Size and shape spaces for landmark data in two dimensions.Statis. Sci. 1, 181–242.

    MATH  Google Scholar 

  • Bookstein, F. L. 1989a. Principal warps: thin-plate splines and the decomposition of deformations.IEEE Trans. Pattern Anal. Machine Intelligence 11, 567–585.

    Article  MATH  Google Scholar 

  • Bookstein, F. L. 1989b. “Size and shape”: a comment on semantics.Systematic Zoology 38, 173–180.

    Article  Google Scholar 

  • Bookstein, F. L. 1991.Morphometric Tools for Landmark Data. New York: Cambridge University Press.

    MATH  Google Scholar 

  • Bookstein, F. L. 1994. Landmarks, edges, morphometrics, and the brain atlas problem. InFunctional Neuroimaging: Technical Foundations, R. Thatcher, M. Hallett, T. Zeffiro, E. John and M. Huerta (Eds), pp. 107–119. New York: Academic Press.

    Google Scholar 

  • Bookstein, F. L. 1995a. A standard formula for the uniform shape component in landmark data. InAdvances in Morphometrics: Proceedings of the 1993 NATO ASI on Morphometrics, L. F. Marcus et al. (Eds). New York: Plenum. To appear.

    Google Scholar 

  • Bookstein, F. L. 1995b. Combining the tools of geometric morphometrics. InAdvances in Morphometrics: Proceedings of the 1993 NATO ASI on Morphometrics, L. F. Marcus et al. (Eds). New York: Plenum. To appear.

    Google Scholar 

  • Bookstein, F. L. 1995c. Combining “vertical” and “horizontal” features from medical images.Computer Vision, Virtual Reality, and Robotics in Medicine.Lecture Notes in Computer Science, N. Ayache (Ed), Vol. 905, pp. 184–191. Berlin: Springer.

    Google Scholar 

  • Bookstein, F. L. 1995d. How to produce a landmark point: the statistical geometry of incompletely registered images. InVision Geometry IV. S. P. I. E. Proceedings, (R. A. Melter et al. (Eds), Vol. 2573. Bellingham, WA: SPIE, pp. 266–277.

    Google Scholar 

  • Bookstein, F. L. 1995e. Utopian skeletons in the biometric closet. Occasional Papers of the Institute for the Humanities, number 2, Institute for the Humanities, University of Michigan.

  • Bookstein, F. L., B. Chernoff, R. Elder, J. Humphries, G. Smith and R. Strauss. 1985.Morphometrics in Evolutionary Biology. Philadelphia: Academy of Natural Sciences of Philadelphia.

    Google Scholar 

  • Bookstein, F. L. and W. D. K. Green. 1993. A feature space for edgels in images with landmarks.J. Math. Imaging and Vision 3, 231–261.

    Article  MATH  Google Scholar 

  • Bookstein, F. L. and W. D. K. Green. 1994a. Edgewarp: A flexible program package for biometric image warping in two dimensions. InVisualization in Biomedical Computing 1994.SPIE Proceedings. R. Robb (Ed), Vol. 2359. Bellingham, WA: SPIE, pp. 135–147.

    Google Scholar 

  • Bookstein, F. L. and W. D. K. Green. 1994b. Edgewarp: A program for biometric warping of medical images. Videotape, 26 minutes.

  • Boyd, E. 1980.Origins of the Study of Human Growth. University of Oregon Health Sciences Center. Portland, OR.

    Google Scholar 

  • Burnaby, T. P. 1966. Growth-invariant discriminant functions and generalized distances.Biometrics 22, 96–110.

    Article  MATH  MathSciNet  Google Scholar 

  • DeQuardo, J. R., F. L. Bookstein, W. D. K. Green, J. Brumberg and R. Tandon. 1995. Spatial relationships of neuroanatomic landmarks in schizophrenia.Psychiatry Research: Neuroimaging.

  • Duchon, J. 1976. Interpolation des fonctions de deux variables suivant la principe de la flexion des plaques minces.RAIRO Anal. Numé. 10, 5–12.

    MathSciNet  Google Scholar 

  • Duncan, O. D. 1984.Notes on Social Measurement: Historical and Critical. New York: Russell Sage Foundation.

    Google Scholar 

  • Dürer, A. 1528.Vier Bücher von Menschlicher Proportion. Dietikon-Zürich: Josef Stocker, 1969.

    Google Scholar 

  • Friston, K. J. 1994. Statistical parametric mapping. InFunctional Neuroimating: Technical Foundations R. Thatcher, M. Hallett, T. Zeffiro, E. John and M. Heurta (Eds), pp. 79–93. New York: Academic Press.

    Google Scholar 

  • Goodall, C. R. 1983. The statistical analysis of growth in two dimensions. Doctoral dissertation, Department of Statistics, Harvard University.

  • Goodall, C. R. 1991. Procrustes methods in the statistical analysis of shape.J. Roy. Statist. Soc. Ser. B 53, 285–339.

    MATH  MathSciNet  Google Scholar 

  • Goodall, C. R. and K. V. Mardia. 1991. A geometric derivation of the shape density.Adv. in Appl. Probab. 23, 496–514.

    Article  MATH  MathSciNet  Google Scholar 

  • Gower, J. C. 1971. A general coefficient of similarity and some of its properties.Biometrics 27, 857–874.

    Article  Google Scholar 

  • Grenander, U. and M. Miller. 1994. Representations of knowledge in complex systems.J. Roy. Statist. Soc. Ser. B 56, 549–603.

    MATH  MathSciNet  Google Scholar 

  • Hopkins, J. W. 1966. Some considerations in multivariate allometry.Biometrics 22, 747–760.

    Article  Google Scholar 

  • Hotelling, H. 1936. Relations between two sets of variables.Biometrika 28, 321–377.

    Article  MATH  Google Scholar 

  • Huxley, J. 1932.Principles of Relative Growth. London: Methuen.

    Google Scholar 

  • Jolicoeur, P. 1963. The multivariate generalization of the allometry equation.Biometrics 19, 497–499.

    Article  Google Scholar 

  • Kendall, D. G. 1984. Shape-manifolds, Procrustean metrics, and complex projective spaces.Bull. London Math. Soc. 16, 81–121.

    MATH  MathSciNet  Google Scholar 

  • Kent, J. T. 1994. The complex Bingham distribution and shape analysis.J. Roy. Statist. Soc. Ser. B 56, 285–299.

    MATH  MathSciNet  Google Scholar 

  • Kent, J. T. and K. V. Mardia. 1994. The link between kriging and thin-plate splines. InProbability, Statistics, and Optimisation, F. P. Kelly (Ed), pp. 325–339. New York: Wiley.

    Google Scholar 

  • Koenderink, J. 1990.Solid Shape. Cambridge, MA: M.I.T. Press.

    Google Scholar 

  • Kuhn, T. S. 1959. The function of measurement in modern physical science. InQuantification, H. Woolf (Ed), pp. 31–63. Indianapolis: Bobbs-Merrill.

    Google Scholar 

  • Latour, B. 1987.Science in Action. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Lewis, J. L. W. Lew and J. Zimmerman. 1980. A nonhomogeneous anthropometric scaling method based on finite element principles.J. Biomechanics 13, 815–824.

    Article  Google Scholar 

  • Lohmann, G. P. 1983. Eigenshape analysis of microfossils: a general morphometric procedure for describing changes in shape.Math. Geology 15, 659–672.

    Article  Google Scholar 

  • Marcus, L. F., E. Bello and A. García-Valdecasas (Eds). 1993.Contributions to Morphometrics. Madrid: Monografias, Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Cientificas.

    Google Scholar 

  • Marcus, L. F., M. Corti, A. Loy, G. Naylor and D. Slice (Eds). 1995.Advances in Morphometrics: Proceedings of the 1993 NATO ASI on Morphometrics. New York: Plenum. To appear.

    Google Scholar 

  • Mardia, K. V. 1995. Shape advances and future perspectives. InProceedings in Current Issues in Statistical Shape Analysis, K. V. Mardia and C. A. Gill (Eds), pp. 57–75. Leeds, U.K.: Leads University Press.

    Google Scholar 

  • Mardia, K. V. and I. Dryden. 1989. The statistical analysis of shape data.Biometrika 76, 271–281.

    Article  MATH  MathSciNet  Google Scholar 

  • Mardia, K. V. and C. A. Gill (Eds). 1995.Proceedings in Current Issues in Statistical Shape Analysis. Leeds, U.K.: Leeds University Press.

    Google Scholar 

  • Meinguet, J. 1979. Multivariate interpolation at arbitrary points made simple.Z. Angewandte Math. Phys. 30, 292–304.

    Article  MATH  MathSciNet  Google Scholar 

  • Mosimann, J. E. 1970. Size allometry: size and shape variables with characterizations of the log-normal and generalized gamma distributions.J. Amer. Statist. Assoc. 65, 930–945.

    Article  MATH  Google Scholar 

  • Netter, F. H. 1989.Atlas of Human Anatomy. Summit, NJ: Ciba-Geigy Corporation.

    Google Scholar 

  • Oxnard, C. E. 1973.Form and Pattern in Human Evolution. Chicago: University of Chicago Press.

    Google Scholar 

  • Oxnard, C. E. 1978. On biologist's view of morphometrics.Ann. Rev. Ecology and Systematics 9, 219–241.

    Article  Google Scholar 

  • Pearson, K. 1914–1930.The Life, Letters and Labours of Francis Galton (Three volumes bound as four). Cambridge, U.K.: University Press.

    Google Scholar 

  • Porteous, I. R. 1994.Geometric Differentiation for the Intelligence of Curves and Surfaces. Cambridge, U.K.: Cambridge University Press.

    MATH  Google Scholar 

  • Reyment, R. A. 1991.Multivariate Palaeobiology. Oxford: Pergamon.

    Google Scholar 

  • Richards, O. W. and A. C. Kavanagh. 1943. The analysis of relative growth-gradients and changing form of growing organisms: illustrated by the tobacco leaf.American Naturalist 77, 385–399.

    Article  Google Scholar 

  • Rohlf, F. J. 1993. Relative warp analysis and an example of its application to mosquito wings. InContributions to Morphometrics, L. F. Marcus et al. (Eds), pp. 131–159. Madrid: Monografias, Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Cientificas.

    Google Scholar 

  • Rohlf, F. J. and F. J. Bookstein (Eds). 1990.Proceedings of the Michigan Morphometrics Workshop. Ann Arbor, MI: University of Michigan Museums.

    Google Scholar 

  • Rohlf, F. J. and D. Slice, 1990. Extensions of the Procrustes method for the optimal superposition of landmarks.Systematic Zoology 39, 40–59.

    Article  Google Scholar 

  • Sibson, B. 1978. Studies in the robustness of multidimensional scaling: Procrustes statistics.J. Roy. Statist. Soc. Ser. B. 40, 234–238.

    MATH  Google Scholar 

  • Sneath, P. H. A. 1967. Trend-surface analysis of transformation grids.J. Zoology 151, 65–122.

    Article  Google Scholar 

  • Sneath, P. H. A. and R. R. Sokal, 1963.Principles of Numerical Taxonomy. San Francisco: W. H. Freeman.

    Google Scholar 

  • Stigler, S. M. 1986.The History of Statistics: The Measurement of Uncertainty Before 1900. Cambridge, MA: Harvard University Press.

    MATH  Google Scholar 

  • Thompson, D'A. W. 1917.On Growth and Form. London: Macmillan.

    Google Scholar 

  • Timoshenko, S. and S. Woinowsky-Krieger. 1959.Theory of Plates and Shells, 2nd ed. New York: McGraw-Hill.

    Google Scholar 

  • Wahba, G. 1990.Spline Models for Observational Data. Philadelphia: Society for Industrial and Applied Mathematics.

    MATH  Google Scholar 

  • Wright, S. 1968.Evolution and the Genetics of Populations. Vol. 1: Genetic and Biometric Foundations. Chicago: University of Chicago Press.

    Google Scholar