Biological nitrogen removal from wastewater
- ️Sat Jan 01 2005
Abstract
A review of the research on the kinetics of nitrification and denitrification is presented including an explanation of reaction engineering models. The results of laboratory scale experiments with high rate nitrification processes are discussed using kinetic results for oxygen limitation as well as for substrate limitation and inhibition. It can be demonstrated that reaction engineering models are helpful for a better understanding of the processes and for the design of reactors. Pilot scale investigations from the last 15 years show remarkable advances in the increase in nitrification efficiency and in the stabilization of the process. The time is ripe for nitrogen removal from industrial effluents in full scale processes!
Preview
Unable to display preview. Download preview PDF.
Abbreviations
- c:
-
concentration
cB
: -
bacteria concentration as odm (organic dry matter) M/L3
c′: -
concentration of dissolved oxygen M/L3
kD
: -
decay coefficient 1/T
ke
: -
endogenous respiration coefficient 1/T
K′: -
oxygen saturation coefficient M/L3
KSH
: -
saturation coefficient for the unionized substrate M/L3
KiH
: -
inhibition coefficient for the unionized substrate M/L3
Ks
: -
saturation coefficient for the ionized substrate M/L3
Ki
: -
inhibition coefficient for the ionized substrate M/L3
Ka, Kb
: -
equilibrium constants for dissociation of the substrate M/L3
nR
: -
recycle ratio
nE
: -
thickening ratio
r: -
reaction rate M/L3T
r′: -
oxygen utilization rate M/L3T
r′*
: -
real maximal oxygen utilization rate M/L3T
rBW
: -
growth rate M/L3T
rBd
: -
decay rate M/L3T
\(r_{o_2 s}\)
: -
oxygen utilization rate for substrate removal (e.g. ammonia) M/L3T
\(r_{o_2 e}\)
: -
oxygen utilization rate for endogenous respiration M/L3T
S: -
Monod or Haldane term (Eq. 42)
T: -
temperature ‡C
t: -
time T
tv
: -
(hydraulic) mean residence time T
tvB
: -
sludge age (mean residence time of bacteria) T
Μ: -
specific growth rate 1/T
Μmax
: -
maximal specific growth rate 1/T
Μ
*max
: -
real maximal specific growth rate 1/T
o: -
influent
a: -
effluent, reactor
M: -
mixing point
R: -
recycle flow
ü: -
surplus sludge
k: -
critical
max: -
maximal
References
Cousins WG, Mindler AB (1972) J WPCF 44: 607
Koziorowski B, Kucharski J (1972) Industrial waste disposal. Pergamon, Oxford
Adams CE, Eckenfelder WW (1977) J WPCF 49: 413
Garrison WE, Kremer JG, Murk J (1973) Proc 28th Ann Purdue Ind Waste Conf 309–322
Pascik I, Mann T (1984) Water Sci Tech Vol 16, Vienna, 215–223
Hutton WC, La Rocca Sa (1975) J WPCF 47, 989–997
Arnold DW, Wolfram WE (1975) Proc 30th Ann Purdue Ind Waste Conf 760-767
Meinck F, Stoof H, Kohlschütter H (1968) IndustrieabwÄsser; Fischer, Stuttgart
ATV (eds) (1985) Lehr-und Handbuch der Abwassertechnik, 3 Aufl, Bd V: Organisch verschmutzte AbwÄsser der Lebensmittelindustrie. Ernst, Berlin
Braun R (1982) Biogas-MethangÄrung organischer Abfallstoffe — Grundlagen und Anwendungsbeispiele. Springer, Wien
Neumann H, Viehl K (1966) Gwf wasser/abwasser 107, 1151–1154
Zall RR (1972) J Milk Food Technol 35, 53–55
Basu AK (1975) J WPCF 2184–2190
Patterson JW, Minear Ra (1975) State-of-the-Art for Inorganic Chemicals Industry: Commerical Explosives; US EPA 6002-74-009-b
US EPA (Hrsg. 1975) Development Document for Effluent Limitation Guidelines and New Source Performance Standards for the Pressed and Blown Glass Segment of the Glass Manufacturing Point Source Category; US EPA 440/1-75/034-a
Brown GE (1975) Land Application of High Nitrogenous Industrial Wastewater; Proc of the National Conf on Management and Disposal of Residues from the Treatment of Ind Wastewaters, Washington DC
Dombrowski T (1991) Kinetik der Nitrifikation und Reaktionstechnik der Stickstoffeliminierung aus hochbelasteten AbwÄssern; VDI-Fortschrittsberichte, Reihe 15: Umwelttechnik Nr 87
Patterson JW (ed) (1985) Nitrite and Nitrate Nitrogen, in Industrial Wastewater Treatment Technology. Butterworth, Boston
Francis CW, Mankin JB (1977) Water Research 11: 289
Jewell WJ, Cummings RJ (1975) J of WPCF 47: 2281
Bode H (1985) Beitrag zur Anaerob-aerob-Behandlung von IndustrieabwÄssern; Veröff des Inst f Siedlungswasser-wirtschaft der UniversitÄt Hannover, Heft 64
Lompe D (1992) Kinetik und Reaktionstechnik der biologischen Denitrifikation; Dissertation, TU Berlin
Frame Wastewater Regulation, Allgemeine Rahmen-Verwaltungs-vorschrift über Mindestanforderungen an das Einleiten von Abwasser in GewÄsser (Rahmen-Abwasser VwV), Anhang 1 “Gemeinden”, vom 8. Sept 1989
Lohaus J (1990) Korrespondenz Abwasser 37, 660–667
Loveless Je, Painter Ha (1968) J gen Microbiol 52, 1–14
Haug RT, McCyrty PL (1972) J WPCF 44, 2086–2102
Sharma B, Ahlert RC (1977) Water Research 11, 897–925
Haldane JBS (1965) Enzymes; Longmans Green London (1930) and MIT Press Cambridge, Mass
Knowles G, Downing AL, Barret MJ (1965) J gen Microbiol 38, 263–278
Jenkins SH (1969) Nitrification, Water Poll Control, 610–618
Gray NF (1989) Biology of Wastewater Treatment; Oxford Science Publishers, Oxford
Stankewich MJ jr (1972) Proc 27th Ann Purdue Ind Waste Conf 1–23
Wiesmann U (1966) Chem-Ing-tech 58, 464–474
Wiesmann U (1989) Wasserkalender, Erich-Schmidt, Berlin, p 117
Lompe D, Wiesmann U (1991) Chem-Ing-Tech 63, 692–699
Anthonisen AC, Loehr RC (1976) J WPCF, 835–852
Bergeron P (1978) Karlsruher Berichte zur Ingenieurbiologie, H 12
Nyhuis G (1985) Veröffentlichungen des Instituts für Siedlungswasserwirtschaft und Abfalltechnik der TU Hannover, Heft 61
Richardson M (1985) Royal Society of Chemistry, London
Bédard C, Knowles R (1989) Microbiol Rev 53, 68–84
La Motta E (1979) J Env Eng div, 655–673
Tanaka H, Dunn IJ (1982) Biotech and Bioeng 24, 669–689
Strand SE, McDonell AJ (1985) Water Research 19, 345–352
Larsen-Vefring W (1992) Simulation der Nitrifikation und anderer bakterieller Stoffwandlungen im Biofilm; Dissertation, TU Berlin
ATV-Regelwerk, Arbeitsblatt A 131, Feb 91: Bemessung von einstufigen Belebungsanlagen ab 5000 Einwohnerwerten
Williams SC, Harrington DW, Cooper PF (1986) Wat Pol Control 85, 81–89
Dalentoft E: Biological Treatment of a high strength nitrogen wastewater, Environ Biotechnology, Int Symp 22/25.04.1991, Ostende
Shade HJ (1977) Chem Eng Progr 73, 45–50
Ganczarczyk JJ (1979) Water Research 13, 337–342
Heijnen JJ (1989) Large Scale Anaerobic-aerobic Treatment of Complex Industrial Waste Water Using Immobilized Biomass in Fluidized Bed and Air-Lift Suspensions Reactors: GVC reprints Verfahrenstechnik der mechanischen, thermischen und biologischen Abwasserreinigung, Bd 2
Author information
Authors and Affiliations
Institut für Verfahrenstechnik, Technische UniversitÄt Berlin, StraΒe des 17. Juni 135, D-10623, Berlin, FRG
U. Wiesmann
Authors
- U. Wiesmann
You can also search for this author in PubMed Google Scholar
Rights and permissions
Copyright information
© 1994 Springer-Verlag
About this chapter
Cite this chapter
Wiesmann, U. (1994). Biological nitrogen removal from wastewater. In: Biotechnics/Wastewater. Advances in Biochemical Engineering/Biotechnology, vol 51. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0008736
Download citation
DOI: https://doi.org/10.1007/BFb0008736
Published: 30 September 2005
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-57319-7
Online ISBN: 978-3-540-48062-4
eBook Packages: Springer Book Archive