Integrable systems and algebraic curves
- ️Sun Jan 01 2006
ADLER, M.: Some finite-dimensional systems and their scattering behavior. Comm. Math. Phys. 55 (1977) 195–230.
_____: Completely integrable systems and symplectic action. J. Math. Phys. (to appear).
_____: On a trace functional for formal pseudo-differential operators and the symplectic structure of the Korteweg-de Vries equation. Inventiones Math. (1979)
ADLER, M., and J. MOSER: On a class of polynomials connected with the Korteweg-de Vries equation. Comm. Math. Phys. 61 (1978) 1–30.
AGRANOVICH, Z., and V. MARCENKO: The Inverse Scattering Theory. Gordon and Breach, New York, 1963.
AIRAULT, H., H. P. McKEAN, and J. MOSER: Rational and elliptic solutions of the Korteweg-de Vries equation and a related many-body problem. CPAM 30 (1977) 95–148.
AKHIEZER, N.: A continuous analogue of orthogonal polynomials on a system of intervals. Dokl.Akad. Nauk 141 (1961) 263–266; Sov. Math. 2 (1961) 1409–1412.
ARNOLD, V.: Sur la géométrie différentielle des groupes de Lie de dimension infini et ses spplications à l'hydrodynamique des fluides parfaits. Ann. Inst. Grenoble 16 (1966) 319–361.
_____: Mathematical Methods of Classical Mechanics. Nauka, Moscow, 1974; Springer Verlag, New York, 1978.
BAKER, H.: Abel's Theorem and the Allied Theory, Including the Theory of the Theta Functions. Cambridge U. Press, Cambridge, 1897.
_____: Note on the foregoing paper "Commutative ordinary differential operators" by J. L. BURCHNALL and T. W. CHAUNDY. Proc. Royal Sco. London 118 (1928) 584–593.
BARGMANN, V.: On the connection between phase shifts and scattering potentials. Rev. Mod. Phys.. 21 (1949) 488–493.
BAUR, L.: Aufstellung eines vollständigen System von Differentialen erster Gattung in einem cubischen Funktionenkörpers. Math. Ann. 46 (1895) 31–61.
BLISS, G.: Algebraic Functions. AMS Publ. 16, New York, 1933.
BORG, G.: Eine Umkerhrung der Sturm-Liouvilleschen Eigenwertaufgabe. Acta Math. 78 (1945) 1–96.
BOUSSINESQ, J.: Théorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal, en communiqant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. J. Math. Pures Appl. 7 (1872) 55–108.
BURCHNELL, J., and T. CHAUNDY: Commutative ordinary differential operators. Proc. London Math. Soc. 21 (1922) 420–440; Proc.Royal Soc. London 118 (1928) 557–583; 134 (1931) 471–485.
BUSLAEV, V., and L. FADDEEV: On trace formulas for singular Sturm-Liouville operators. Dokl. Akad. Nauk. 132 (1960) 13–16.
CALOGERO, F.: Solution of the n-body problems with quadratic and/or inversely quadratic pair potentials. J. Math. Phys. 12 (1971) 419–436.
CARLEMAN, T.: Sur les fonctions inverses des fonctions entières. Ark. Mat. Astron. Phys. 15 (1927).
CHOODNOVSKY, D., and G. CHOODNOVSKY: Seminaire sur les Équations Non-linéaires. Centre de Math., École Poly., Palaisseau, 1977/78.
_____: Completely integrable class of mechanical systems connected with the Korteweg-de Vries and multicomponent Schrödinger equations (1). Sem. Diophantienne, École Poly., Palaisseau, 10 June 1978.
_____: Multi-dimensional two-particle problem with non-central potential. Sem. Diophantienne, École Poly., 22 Nov. 1978.
CHU, F., D. McLAUGHLIN, and A. SCOTT: The soliton: a new concept in applied science. Proc. IEEE 61 (1973) 1443–1483.
DATE, E., and S. TANAKA: Analogue of inverse scattering theory for the discrete Hill's equation and exact solutions for the periodic Toda Lattice. Progress Theor. Phys. 55 (1976) 457–465.
DEIFT, P., and E. TRUBOWITZ: Inverse scattering on the line. CPAM (to appear).
DIKII, L., and I. M. GELFAND: Asymptotic behaviour of the resolvent of Sturm-Liouville equations and the algebra of the Kortewegde Vries equations. Uspekhi Mat. Nauk 30 (1975) 67–100; Russ. Math. Surveys 30 (1975) 77–113.
_____: Fractional powers of operators and Hamiltonian systems. Funkt. Anal. Pril. 10 (1976) 13–29.
DIRICHLET, P.: Vorlesungen über Zahlentheorie. F. Vieweg, Braunschweig, 1871.
DONAGI, R.: Group law on the intersection of two quadrics. (to appear).
DUBROVIN, B., and S. NOVIKOV: Periodic and conditionally periodic analogues of multi-soliton solutions of the Korteweg-de Vries equation. Dokl. Akad. Nauk 6 (1974) 2131–2144.
DUBROVIN, B., V. MATVEEV, and S. NOVIKOV. Non-linear equations of Korteweg-de Vries type, finite-zone linear operators, and abelian varieties. Uspekhi Mat. Nauk 31 (1976) 55–136; Russ. Math. Surveys 31 (1976) 59–146.
DYM, H., and H. P. McKEAN: Fourier Series and Integrals. Academic Press, New York, 1972.
DYSON, F.: Fredholm determinants and inverse scattering problems. Comm. Math. Phys. 47 (1976) 171–183.
EBIN, D., and J. MARSDEN: Groups of diffeomorphisms and the solution of the classical Euler equations for a perfect fluid. BAMS 75 (1969) 962–967, Ann. of Math, 92 (1970) 102–163.
ESTABROOK, F., and H. WAHLQUIST: Bäcklund transformations for solutions of the Korteweg-de Vries equation. Phys. Rev. Letters 31 (1973) 1386–1390.
_____: Prolongation structures of non-linear evolution equations. J. Math. Phys. 17 (1976) 1–7.
FADDEEV, L.: On the relation between the S-matrix and the potential of the one-dimensional Schrodinger equation. Tr. Mat. Inst. V.A. Steklova 73 (1964) 314–336; TAMS 65 (1966) 139–166.
FADDEEV, L., and V. ZAKHAROV: Korteweg-de Vries equation: a completely integrable Hamiltonian system. Funkt. Anal. Pril. 5 (1971) 280–287.
FAY, J.: Theta Functions on Riemann Surfaces. Lect. Notes in Math. 352, Springer-Verlag, New York, 1973.
FERMI, E., J. PASTA, and S. ULAM: Studies of non-linear problems. Collected Papers of Enrico Fermi 2, p.978, Chicago, 1965.
FLASCHKA, H.: The Toda lattice, (1) and (2). Phys. Rev. 9 (1974) 1924–1925; Prog. Theor. Phys. 51 (1974) 703–706.
_____: Discrete and periodic illustrations of some aspects of the inverse method. Lect. Notes in Phys. 38 (1975) 441–466.
FLASCHKA, H., and D. McLAUGHLIN: Canonically conjugate variables for the Korteweg-de Vries equation and the Toda lattice with periodic boundary conditions. Prog. Theor. Phys. 55 (1976) 438.
FORNBERG, G., and G. WHITHAM: A numerical and theoretical study of certain non-linear wave phenomena. Phil. Trans. Roy. Soc. London 289 (1978) 373–404.
GARDINER, C.: Korteweg-de Vries equation and generalizations (4). The Korteweg-de Vries equation as a Hamiltonian system. J. Math. Phys. 12 (1971) 1548–1557.
GARDINER, C., J. GREENE, M. KRUSKAL, and R. MIURA: Method for solving the Korteweg-de Vries equation. Phys. Rev. Letters 19 (1967) 1095–1097.
_____: Korteweg-de Vries equation and generalizations (6). Methods for exact solution. CPAM 27 (1974) 97.
GARDINER, C., M. KRUSKAL, and R. MIURA. Korteweg-de Vries equation and generalizations (2). Existence of conservation laws and integrals of the motion. J. Math. Phys. 9 (1968) 1204–1209.
GELFAND, I. M., and B. LEVITAN: On the determination of a differential equation from its spectral function. Izvest. Akad. Nauk 15 (1951) 309–360.
GOLUBEV, V. V.: Lectures on Integration of the Equations of Motion of a Rigid Body about a Fixed Point. Nauka, Moscow, 1953; Monsin, Jerusalem, 1960.
GUILLEMIN, V., and D. KAZHDAN: Spectral rigidity of the Schrödinger operator on certain negatively curved 2-manifolds, (to appear).
HENON, M.: Integrals of the Toda lattice. Phys. Rev. 9 (1974) 1421–1423.
HENSEL, K., and G. LANDSBERG: Theorie der algebraischen Fonktionen einer Variabeln. Teubner, Leipzig, 1902, Chelsea Publ. Co., New York, 1965.
HIROTA, R.: Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons. Phys. Rev. Letters 27 (1971) 1192–1194.
_____: Exact n-solition solution of the wave equation of long waves in shallow water and non-linear lattices. J. Math. Phys. 14 (1973) 810–815.
_____: Exact n-soliton solutions of a non-linear lumped network equation. J. Phys. Soc. Japan 35 (1973) 286–288.
HOCHSTADT, H.: Function-theoretic properties of the discriminant of Hill's equation. Math. Zeit. 82 (1963) 237–242.
_____: On the determination of Hill's equation from its spectrum. Arch. Rat. Mech. Anal. 19 (1965) 353–362.
HYMAN, M., appendix to P. LAX: Almost periodic solutions of the KdV equation. SIAM Rev. 18 (1976) 351–375.
INCE, E.: The periodic Lamé functions. Proc. Roy. Soc. Edinburgh 60 (1940) 47–63; 83–99.
ITS, A., and V. MATVEEV: Hill's operator with a finite number of lacunae. Funkt. Anal. Pril. 9 (1975) 69–70.
JACOBI, C.: Gessamelte Werke, Bd. 7, supplement: Vorlesungen über Dynamik. Reimer, Berlin, 1884.
KAC, M., and P. van MOERBEKE: On some periodic Toda lattices. PNAS USA 72 (1975) 1627–1629.
_____ The solution of the periodic Toda lattice. PNAS USA 72 (1975) 2879–2880.
_____: On an explicitly soluble system of nonlinear differential equations related to certain Toda lattices. Adv. Math. 16 (1975) 160–169.
KADOMTSEV, B. B., and V. I. PETIASHVILII: On the stability of solitary waves in weakly dispersing media. Dokl. Akad. Nauk 192 (1970) 753–756; Sov. Phys. Dokl. 15 (1970) 539–541.
KAY, I., and H. MOSES: Reflectionless transmission through dielectrics and scattering potentials. J. Appl. Phys. 27 (1956) 1503–1508.
KAZHDAN, D., B. KOSTANT, and S. STERNBERG: Hamiltonian group actions and dynamical systems of Calogero type. CPAM 31 (1978) 481–508.
KORTEWEG, D., and G. de VRIES: On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Phil. Mag. 39 (1895) 422–443.
KOSTANT, B.: Whittaker vectors and representation theory. Invent. Math. 48 (1978) 101–104.
_____: Ann. Math. (to appear).
KOVALEVSKAYA, S.: Sur le problème de la rotation d'un corps autour d'un point fixe. Acta Math. 12 (1889) 177–232; Navehnye Raboty, Acad. Sci. USSR, 1948.
KRICHEVER, I. M.: Algebraic-geometric construction of the Zakharov-Shabat equations and their solutions. Dokl. Akad. Nauk 227 (1976) 291–294; Sov. Math. Dokl. 17 (1976) 394–397.
_____: The method of algebraic geometry in the theory of non-linear equations. Uspekhi Mat. Nauk 32 (1977) 183–208.
_____: On rational solutions of the Kadmotsev-Petiashvilii equation and integrable systems of n particles on the line. Funkt. Anal. Pril. 12 (1978) 76–78.
KPUSKAL, M.: Non-linear wave equations. Lect. Notes in Phys. 38 (1975) 310–354.
KRUSKAL, M., and N. ZABUSKY: Interactions of solitons in a collisionless plasma and the recurrence of initial states. Phys. Rev. Letters 15 (1965) 240–243.
LAMB, G.: Bäcklund transformations at the turn of the century. Lect. Notes in Math. 515 (1976) 69–79.
LANG, S.: Division points on curves. Ann. Math. Pure Appl. 70 (1965) 229–234.
_____: Introduction to Algebraic and Abelian Functions. Addison-Wesley Publ. Co., Reading, 1972.
LAX, P.: Integrals of non-linear equations of evolution and solitary waves. CPAM 21 (1968) 467–490.
_____: Periodic solutions of the Koretweg-de Vries equation. CPAM 28 (1975) 141–188.
LEVINSON, N.: On the uniqueness of the potential in the Schrödinger equation for a given asymptotic phase. Danske Vid. Selsk. Math. Fys. Medd. 25 (1944) 1–29.
_____: The inverse Sturm-Liouville problem. Math. Tidsskr. (1949) 25–30.
_____: Certain explicit relations between phase shift and scattering potential. Phys. Rev. 89 (1953) 755–757.
MAGNUS, W., and W. WINKLER: Hill's Equation. Interscience-Wiley, New York, 1966.
MANAKOV, S.: On complete integrability and stochastization in discrete dynamical systems. Z. Eksp. Teor. Fiz. 67 (1974) 543–555.
_____: Note on the integration of Euler's equations of the dynamics of an n-dimensional rigid body. Funkt. Anal. Pril. 10 (1976) 93–94.
MARCENKO, V., and I. V. OSTROVSKII: A characterization of the spectrum of Hill's operator. Sov. Math. Dokl. 16 (1975) 761–765; Mat. Sbornik 139 (1975) 540–606.
MATVEEV, V.: 373, U. Wroclaw, June 1976.
McKEAN, H. P.: Selberg's trace formula as applied to a compact Riemann surface. CPAM 25 (1972) 225–246.
_____: Stability for the Korteweg-de Vries equation. CPAM 30 (1977) 347–353.
_____: Boussinesq's equation as a Hamiltonian System. Adv. Math. Suppl. 3 (1978) 217–226.
_____: Theta functions, solitons, and singular curves. (to appear).
_____: Units of Hill's curves. (to appear).
_____: Int. Cong. Math. Helsinki (to appear).
_____: Toda lattice, tridiagonal matrices, and singular curves. (to appear).
McKEAN, H. P., and P. van MOERBEKE: The spectrum of Hill's equation. Inventiones Math. 30 (1975) 217–274.
_____: Hill and Toda curves. CPAM (to appear).
McKEAN, H. P., and E. TRUBOWITZ: Hill's operator and hyperelliptic function theory in the presence of infinitely many branch points. CPAM 29 (1976) 143–226.
_____: Hill's surfaces and their theta functions. BAMS (1978)-
MEIMAN, N.: The theory of 1-dimensional Schrödinger operators with periodic potential. J. Math. Phys. 18 (1977) 834–848.
MIURA, R.: Korteweg-de Vries equation and generalizations (1). A remarkable explicit non-linear transformation. J. Math. Phys. 9 (1968) 1202–1204.
_____ ed.: Bäcklund Transformations. Lect. Notes in Math. 515 Springer-Verlag, New York, 1976.
MOERBEKE, P. van: The spectrum of Jacobi matrices. Inventiones Math. 37(1976), 45–81.
MOERBEKE, P. van, and D. MUMFORD: The spectrum of difference operators and the theory of curves. (to appear).
MORRIS, H.: Prolongation structures and a generalized inverse scattering problem. J. Math. Phys. 17 (1976) 1867–1869.
MOSER, J.: Three integrable Hamiltonian systems connected with isospectral deformations. Adv. Math. 16 (1975) 197–220.
____: Finitely many mass points on the line under the influence of an exponential potential — an integrable system. Lect. Notes in Phys. 38 (1975) 467–497.
____: Various aspects of integrable Hamiltonian systems. CIME, Bressanone (1978).
MOSER, J., and E. TRUBOWITZ: (to appear).
MUMFORD, D.: An algebraic-geometric construction of commuting operators and of solutions to the Toda lattice equation, Korteweg-de Vries equation and related nonlinear equations. (to appear).
MURRAY, A.: Existence and regularity for solutions of the Korteweg-de Vries equation. Arch. Rat. Mech. (1979)-
____: Solutions of the Korteweg-de Vries equation evolving from a "box" and other irregular initial functions. Duke Math. J. 45 (1978) 149–181.
NEUMANN, C.: De problemate quodam mechanica, quod ad primam integralium ultra-ellipticorum classem revocatur. J. Reine U. Angew Math. 56 (1859) 54–66.
NEVANLINNA, F.: Analytic Functions. Springer-Verlag, Berlin, 1970.
NOVIKOV, S.: The periodic problem for the Korteweg-de Vries equation. Funkt. Anal. Pril. 8 (1974) 54–66.
OLSHANETSKY, M., and A. PERELOMOV: Completely integrable Hamiltonian systems concerned with semi-simple Lie algebras. Inventiones Math. 37 (1976) 93–108.
POINCARÉ, H.: Les Méthodes Nouvelles de la Méchanique Céleste. Gauthier-Villars Cie., Paris, 1892; Dover Publ. Co., New York, 1957.
RAYLEIGH,: Phil. Mag. 1 (1876) 257.
SCHWARTZ, M.: (to appear).
SCOTT-RUSSELL, J.: Report on waves. Proc. Roy. Soc. Edinburgh (1844) 319–320.
SIEGEL, C. L.: Topics in Complex Function Theory (2). Interscience-Wiley, New York, 1971.
SINGER, I. M.: (to apper).
STEIMANN, U.: Äquivalente periodische potentiale. Helv. Phys. Acta 30 (1957) 515–520.
STIELTJES, T. J.: Sur la réduction en fraction continue d'une série procedant suivant les puissances descendentes d'une variable. Oeuvres Complètes 2, 184–206. Noordhoff, Groningen, 1918.
SYMES, W.: A Poisson structure on the space of symbols. MRC Technical Summary Report, Madison, Wisc., April 1978.
TANAKA, S.: On the n-tuple wave solutions of the Korteweg-de Vries equation. Publ. RIMS Kyoto 8 (1972/73) 419–427.
____: Korteweg-de Vries equation: construction of solutions in terms of scattering data. Osaka J. Math. 11 (1974) 49–59.
TAPPERT, F.: (to apper).
THICKSTUN, W.: A system of particles equivalent to solitons. J. Math. Anal. Appl. 55 (1976) 335–346.
TODA, M.: Wave propagation in anharmonic lattices. J. Phys. Soc. Japan 23 (1967) 501–506.
____: Studies on a nonlinear lattice. Ark. for Det Fysiske Sem. Trondheim 2 (1974).
TRUBOWITZ, E.: The inverse problem for periodic potentials. CPAM 30 (1977) 321–337.
WHITHAM, G.: Linear and Nonlinear Waves. Interscience-Wiley, New York, 1974.
ZAKHAROV, V.: On stochastization of one-dimensional chains of nonlinear oscillators. Zh. Eksp. Teor. Fiz. 65 (1973) 219–225.