link.springer.com

Supersymmetric continuous spin gauge theory - Journal of High Energy Physics

  • ️Najafizadeh, Mojtaba
  • ️Wed Mar 04 2020
  • E.P. Wigner, On Unitary Representations of the Inhomogeneous Lorentz Group, Annals Math. 40 (1939) 149 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • X. Bekaert and N. Boulanger, The Unitary representations of the Poincaré group in any spacetime dimension, in 2nd Modave Summer School in Theoretical Physics, Modave, Belgium, 6–12 August 2006 (2006) [hep-th/0611263] [INSPIRE].

  • L. Brink, A.M. Khan, P. Ramond and X.-z. Xiong, Continuous spin representations of the Poincaré and superPoincaré groups, J. Math. Phys. 43 (2002) 6279 [hep-th/0205145] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • P. Schuster and N. Toro, Continuous-spin particle field theory with helicity correspondence, Phys. Rev. D 91 (2015) 025023 [arXiv:1404.0675] [INSPIRE].

    ADS  Google Scholar 

  • X. Bekaert, M. Najafizadeh and M.R. Setare, A gauge field theory of fermionic Continuous-Spin Particles, Phys. Lett. B 760 (2016) 320 [arXiv:1506.00973] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  • R.R. Metsaev, Continuous spin gauge field in (A)dS space, Phys. Lett. B 767 (2017) 458 [arXiv:1610.00657] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • R.R. Metsaev, Fermionic continuous spin gauge field in (A)dS space, Phys. Lett. B 773 (2017) 135 [arXiv:1703.05780] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  • X. Bekaert, J. Mourad and M. Najafizadeh, Continuous-spin field propagator and interaction with matter, JHEP 11 (2017) 113 [arXiv:1710.05788] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • M. Najafizadeh, Modified Wigner equations and continuous spin gauge field, Phys. Rev. D 97 (2018) 065009 [arXiv:1708.00827] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  • X. Bekaert and J. Mourad, The Continuous spin limit of higher spin field equations, JHEP 01 (2006) 115 [hep-th/0509092] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • A.Y. Segal, A Generating formulation for free higher spin massless fields, hep-th/0103028 [INSPIRE].

  • M. Najafizadeh, Local action for fermionic unconstrained higher spin gauge fields in AdS and dS spacetimes, Phys. Rev. D 98 (2018) 125012 [arXiv:1807.01124] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  • C. Fronsdal, Massless Fields with Integer Spin, Phys. Rev. D 18 (1978) 3624 [INSPIRE].

    ADS  Google Scholar 

  • J. Fang and C. Fronsdal, Massless Fields with Half Integral Spin, Phys. Rev. D 18 (1978) 3630 [INSPIRE].

    ADS  Google Scholar 

  • Y.M. Zinoviev, Infinite spin fields in d = 3 and beyond, Universe 3 (2017) 63 [arXiv:1707.08832] [INSPIRE].

    Article  ADS  Google Scholar 

  • I.L. Buchbinder, M.V. Khabarov, T.V. Snegirev and Y.M. Zinoviev, Lagrangian formulation for the infinite spin N = 1 supermultiplets in d = 4, Nucl. Phys. B 946 (2019) 114717 [arXiv:1904.05580] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  • I.L. Buchbinder, S. Fedoruk and A.P. Isaev, Twistorial and space-time descriptions of massless infinite spin (super) particles and fields, Nucl. Phys. B 945 (2019) 114660 [arXiv:1903.07947] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  • I.L. Buchbinder, S.J. Gates and K. Koutrolikos, Superfield continuous spin equations of motion, Phys. Lett. B 793 (2019) 445 [arXiv:1903.08631] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • I.L. Buchbinder, S. Fedoruk and A.P. Isaev, Massless infinite spin (super)particles and fields, arXiv:1911.00362 [INSPIRE].

  • A.M. Khan and P. Ramond, Continuous spin representations from group contraction, J. Math. Phys. 46 (2005) 053515 [Erratum ibid. 46 (2005) 079901] [hep-th/0410107] [INSPIRE].

  • L. Edgren, R. Marnelius and P. Salomonson, Infinite spin particles, JHEP 05 (2005) 002 [hep-th/0503136] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • L. Edgren and R. Marnelius, Covariant quantization of infinite spin particle models and higher order gauge theories, JHEP 05 (2006) 018 [hep-th/0602088] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • J. Mourad, Continuous spin particles from a tensionless string theory, AIP Conf. Proc. 861 (2006) 436 [INSPIRE].

    Article  ADS  Google Scholar 

  • P. Schuster and N. Toro, On the Theory of Continuous-Spin Particles: Wavefunctions and Soft-Factor Scattering Amplitudes, JHEP 09 (2013) 104 [arXiv:1302.1198] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • P. Schuster and N. Toro, On the Theory of Continuous-Spin Particles: Helicity Correspondence in Radiation and Forces, JHEP 09 (2013) 105 [arXiv:1302.1577] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • A.K.H. Bengtsson, BRST Theory for Continuous Spin, JHEP 10 (2013) 108 [arXiv:1303.3799] [INSPIRE].

    Article  ADS  Google Scholar 

  • P. Schuster and N. Toro, A new class of particle in 2 + 1 dimensions, Phys. Lett. B 743 (2015) 224 [arXiv:1404.1076] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • V.O. Rivelles, Gauge Theory Formulations for Continuous and Higher Spin Fields, Phys. Rev. D 91 (2015) 125035 [arXiv:1408.3576] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  • B. Schroer, Wigner’s infinite spin representations and inert matter, Eur. Phys. J. C 77 (2017) 362 [arXiv:1601.02477] [INSPIRE].

    Article  ADS  Google Scholar 

  • V.O. Rivelles, Remarks on a Gauge Theory for Continuous Spin Particles, Eur. Phys. J. C 77 (2017) 433 [arXiv:1607.01316] [INSPIRE].

    Article  ADS  Google Scholar 

  • X. Bekaert and E.D. Skvortsov, Elementary particles with continuous spin, Int. J. Mod. Phys. A 32 (2017) 1730019 [arXiv:1708.01030] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  • K.-H. Rehren, Pauli-Lubanski limit and stress-energy tensor for infinite-spin fields, JHEP 11 (2017) 130 [arXiv:1709.04858] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • R.R. Metsaev, Cubic interaction vertices for continuous-spin fields and arbitrary spin massive fields, JHEP 11 (2017) 197 [arXiv:1709.08596] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • M.V. Khabarov and Y.M. Zinoviev, Infinite (continuous) spin fields in the frame-like formalism, Nucl. Phys. B 928 (2018) 182 [arXiv:1711.08223] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • J.M. Gracia-Bondia, F. Lizzi, J.C. Varilly and P. Vitale, The Kirillov picture for the Wigner particle, J. Phys. A 51 (2018) 255203 [arXiv:1711.09608] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  • R.R. Metsaev, Continuous-spin mixed-symmetry fields in AdS5 , J. Phys. A 51 (2018) 215401 [arXiv:1711.11007] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  • K.B. Alkalaev and M.A. Grigoriev, Continuous spin fields of mixed-symmetry type, JHEP 03 (2018) 030 [arXiv:1712.02317] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • R.R. Metsaev, BRST-BV approach to continuous-spin field, Phys. Lett. B 781 (2018) 568 [arXiv:1803.08421] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  • I.L. Buchbinder, S. Fedoruk, A.P. Isaev and A. Rusnak, Model of massless relativistic particle with continuous spin and its twistorial description, JHEP 07 (2018) 031 [arXiv:1805.09706] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • I.L. Buchbinder, V.A. Krykhtin and H. Takata, BRST approach to Lagrangian construction for bosonic continuous spin field, Phys. Lett. B 785 (2018) 315 [arXiv:1806.01640] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  • V.O. Rivelles, A Gauge Field Theory for Continuous Spin Tachyons, arXiv:1807.01812 [INSPIRE].

  • K. Alkalaev, A. Chekmenev and M. Grigoriev, Unified formulation for helicity and continuous spin fermionic fields, JHEP 11 (2018) 050 [arXiv:1808.09385] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • J.M. Gracia-Bondía and J.C. Várilly, On the kinematics of the last Wigner particle, Springer Proc. Phys. 229 (2019) 225 [arXiv:1809.00387] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  • R.R. Metsaev, Cubic interaction vertices for massive/massless continuous-spin fields and arbitrary spin fields, JHEP 12 (2018) 055 [arXiv:1809.09075] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • R.R. Metsaev, Light-cone continuous-spin field in AdS space, Phys. Lett. B 793 (2019) 134 [arXiv:1903.10495] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • C. Burdík, V.K. Pandey and A. Reshetnyak, BRST-BFV and BRST-BV Lagrangians for Bosonic Fields with Continuous Spin on R1,d−1 , arXiv:1906.02585 [INSPIRE].

  • X. Bekaert, M. Rausch de Traubenberg and M. Valenzuela, An infinite supermultiplet of massive higher-spin fields, JHEP 05 (2009) 118 [arXiv:0904.2533] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • Y.M. Zinoviev, Massive N = 1 supermultiplets with arbitrary superspins, Nucl. Phys. B 785 (2007) 98 [arXiv:0704.1535] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • T. Curtright, Massless Field Supermultiplets With Arbitrary Spin, Phys. Lett. 85B (1979) 219 [INSPIRE].

    Article  ADS  Google Scholar 

  • M.A. Vasiliev, ‘Gauge’ form of description of massless fields with arbitrary spin (in Russian), Yad. Fiz. 32 (1980) 855 [INSPIRE].

    ADS  Google Scholar 

  • S.M. Kuzenko, A.G. Sibiryakov and V.V. Postnikov, Massless gauge superfields of higher half integer superspins, JETP Lett. 57 (1993) 534 [INSPIRE].

    ADS  Google Scholar 

  • S.M. Kuzenko and A.G. Sibiryakov, Massless gauge superfields of higher integer superspins, JETP Lett. 57 (1993) 539 [INSPIRE].

    ADS  Google Scholar 

  • M.E. Peskin and D.V. Schroeder, An Introduction to quantum field theory, Addison-Wesley, Reading, U.S.A. (1995) [INSPIRE].

  • D.Z. Freedman and A. Van Proeyen, Supergravity, Cambridge University Press, Cambridge, U.K. (2012) [INSPIRE].

  • D. Francia and A. Sagnotti, Free geometric equations for higher spins, Phys. Lett. B 543 (2002) 303 [hep-th/0207002] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • D. Francia and A. Sagnotti, On the geometry of higher spin gauge fields, Class. Quant. Grav. 20 (2003) S473 [hep-th/0212185] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • D. Francia, J. Mourad and A. Sagnotti, Current Exchanges and Unconstrained Higher Spins, Nucl. Phys. B 773 (2007) 203 [hep-th/0701163] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • I.L. Buchbinder, A.V. Galajinsky and V.A. Krykhtin, Quartet unconstrained formulation for massless higher spin fields, Nucl. Phys. B 779 (2007) 155 [hep-th/0702161] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • I.L. Buchbinder and A.V. Galajinsky, Quartet unconstrained formulation for massive higher spin fields, JHEP 11 (2008) 081 [arXiv:0810.2852] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • D. Francia, S.L. Lyakhovich and A.A. Sharapov, On the gauge symmetries of Maxwell-like higher-spin Lagrangians, Nucl. Phys. B 881 (2014) 248 [arXiv:1310.8589] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • D. Francia, Generalised connections and higher-spin equations, Class. Quant. Grav. 29 (2012) 245003 [arXiv:1209.4885] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  • D. Sorokin and M. Tsulaia, Higher Spin Fields in Hyperspace. A Review, Universe 4 (2018) 7 [arXiv:1710.08244] [INSPIRE].

  • I.A. Bandos, J. Lukierski and D.P. Sorokin, Superparticle models with tensorial central charges, Phys. Rev. D 61 (2000) 045002 [hep-th/9904109] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  • I. Bandos, P. Pasti, D. Sorokin and M. Tonin, Superfield theories in tensorial superspaces and the dynamics of higher spin fields, JHEP 11 (2004) 023 [hep-th/0407180] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • I. Florakis, D. Sorokin and M. Tsulaia, Higher Spins in Hyperspace, JHEP 07 (2014) 105 [arXiv:1401.1645] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  • I. Florakis, D. Sorokin and M. Tsulaia, Higher Spins in Hyper-Superspace, Nucl. Phys. B 890 (2014) 279 [arXiv:1408.6675] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  • R.R. Metsaev, Cubic interaction vertices for N = 1 arbitrary spin massless supermultiplets in flat space, JHEP 08 (2019) 130 [arXiv:1905.11357] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • R.R. Metsaev, Cubic interactions for arbitrary spin \( \mathcal{N} \) -extended massless supermultiplets in 4d flat space, JHEP 11 (2019) 084 [arXiv:1909.05241] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • J.P. Derendinger, Lecture notes on globally supersymmetric theories in four and two dimensions, ETH-TH-90-21 (1990).