Agravity - Journal of High Energy Physics
- ️Strumia, Alessandro
- ️Thu Jun 12 2014
K.G. Wilson, The Renormalization Group and Strong Interactions, Phys. Rev. D 3 (1971) 1818 [INSPIRE].
K.G. Wilson, The Origins of lattice gauge theory, Nucl. Phys. Proc. Suppl. 140 (2005) 3 [hep-lat/0412043] [INSPIRE].
L. Giusti, A. Romanino and A. Strumia, Natural ranges of supersymmetric signals, Nucl. Phys. B 550 (1999) 3 [hep-ph/9811386] [INSPIRE].
R. Barbieri and A. Strumia, The ’LEP paradox’, hep-ph/0007265 [INSPIRE].
A. Strumia, The Fine-tuning price of the early LHC, JHEP 04 (2011) 073 [arXiv:1101.2195] [INSPIRE].
A. Arvanitaki, M. Baryakhtar, X. Huang, K. van Tilburg and G. Villadoro, The Last Vestiges of Naturalness, JHEP 03 (2014) 022 [arXiv:1309.3568] [INSPIRE].
A.A. Starobinsky, A New Type of Isotropic Cosmological Models Without Singularity, Phys. Lett. B 91 (1980) 99 [INSPIRE].
R. Fakir and W.G. Unruh, Improvement on cosmological chaotic inflation through nonminimal coupling, Phys. Rev. D 41 (1990) 1783 [INSPIRE].
D.I. Kaiser, Primordial spectral indices from generalized Einstein theories, Phys. Rev. D 52 (1995) 4295 [astro-ph/9408044] [INSPIRE].
S. Tsujikawa and B. Gumjudpai, Density perturbations in generalized Einstein scenarios and constraints on nonminimal couplings from the Cosmic Microwave Background, Phys. Rev. D 69 (2004) 123523 [astro-ph/0402185] [INSPIRE].
F.L. Bezrukov and M. Shaposhnikov, The Standard Model Higgs boson as the inflaton, Phys. Lett. B 659 (2008) 703 [arXiv:0710.3755] [INSPIRE].
F. Bezrukov, A. Magnin, M. Shaposhnikov and S. Sibiryakov, Higgs inflation: consistency and generalisations, JHEP 01 (2011) 016 [arXiv:1008.5157] [INSPIRE].
C.P. Burgess, H.M. Lee and M. Trott, Power-counting and the Validity of the Classical Approximation During Inflation, JHEP 09 (2009) 103 [arXiv:0902.4465] [INSPIRE].
J.L.F. Barbon and J.R. Espinosa, On the Naturalness of Higgs Inflation, Phys. Rev. D 79 (2009) 081302 [arXiv:0903.0355] [INSPIRE].
A. Linde, Inflationary Cosmology after Planck 2013, arXiv:1402.0526 [INSPIRE].
C.P. Burgess, S.P. Patil and M. Trott, On the Predictiveness of Single-Field Inflationary Models, arXiv:1402.1476 [INSPIRE].
G.F. Giudice and H.M. Lee, Starobinsky-like inflation from induced gravity, arXiv:1402.2129 [INSPIRE].
T. Prokopec and J. Weenink, Naturalness in Higgs inflation in a frame independent formalism, arXiv:1403.3219 [INSPIRE].
J. Joergensen, F. Sannino and O. Svendsen, BICEP2 hints towards Quantum Corrections for Non-Minimally Coupled Inflationary Theories, arXiv:1403.3289 [INSPIRE].
Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XXII. Constraints on inflation, arXiv:1303.5082 [INSPIRE].
F. Englert, C. Truffin and R. Gastmans, Conformal Invariance in Quantum Gravity, Nucl. Phys. B 117 (1976) 407 [INSPIRE].
C. Wetterich, Cosmology and the Fate of Dilatation Symmetry,” Nucl. Phys. B 302 (1988) 668 [INSPIRE]
W. Bardeen, On Naturalness in the Standard Model, FERMILAB-CONF-95-391-T
C.T. Hill, Conjecture on the physical implications of the scale anomaly, hep-th/0510177 [INSPIRE].
R. Hempfling, The Next-to-minimal Coleman-Weinberg model, Phys. Lett. B 379 (1996) 153 [hep-ph/9604278] [INSPIRE].
K.A. Meissner and H. Nicolai, Conformal Symmetry and the Standard Model, Phys. Lett. B 648 (2007) 312 [hep-th/0612165] [INSPIRE].
J.P. Fatelo, J.M. Gerard, T. Hambye and J. Weyers, Symmetry breaking induced by top loops, Phys. Rev. Lett. 74 (1995) 492 [INSPIRE].
T. Hambye, Symmetry breaking induced by top quark loops from a model without scalar mass, Phys. Lett. B 371 (1996) 87 [hep-ph/9510266] [INSPIRE].
W.-F. Chang, J.N. Ng and J.M.S. Wu, Shadow Higgs from a scale-invariant hidden U(1)(s) model, Phys. Rev. D 75 (2007) 115016 [hep-ph/0701254] [INSPIRE].
R. Foot, A. Kobakhidze and R.R. Volkas, Electroweak Higgs as a pseudo-Goldstone boson of broken scale invariance, Phys. Lett. B 655 (2007) 156 [arXiv:0704.1165] [INSPIRE].
R. Foot, A. Kobakhidze, K. McDonald and R. Volkas, Neutrino mass in radiatively-broken scale-invariant models, Phys. Rev. D 76 (2007) 075014 [arXiv:0706.1829] [INSPIRE].
R. Foot, A. Kobakhidze, K.L. McDonald and R.R. Volkas, A Solution to the hierarchy problem from an almost decoupled hidden sector within a classically scale invariant theory, Phys. Rev. D 77 (2008) 035006 [arXiv:0709.2750] [INSPIRE].
S. Iso, N. Okada and Y. Orikasa, The minimal B-L model naturally realized at TeV scale, Phys. Rev. D 80 (2009) 115007 [arXiv:0909.0128] [INSPIRE].
T. Hur and P. Ko, Scale invariant extension of the standard model with strongly interacting hidden sector, Phys. Rev. Lett. 106 (2011) 141802 [arXiv:1103.2571] [INSPIRE].
L. Alexander-Nunneley and A. Pilaftsis, The Minimal Scale Invariant Extension of the Standard Model, JHEP 09 (2010) 021 [arXiv:1006.5916] [INSPIRE].
S. Iso and Y. Orikasa, TeV Scale B-L model with a flat Higgs potential at the Planck scale - in view of the hierarchy problem -, PTEP 2013 (2013) 023B08 [arXiv:1210.2848] [INSPIRE].
C. Englert, J. Jaeckel, V.V. Khoze and M. Spannowsky, Emergence of the Electroweak Scale through the Higgs Portal, JHEP 04 (2013) 060 [arXiv:1301.4224] [INSPIRE].
E.J. Chun, S. Jung and H.M. Lee, Radiative generation of the Higgs potential, Phys. Lett. B 725 (2013) 158 [arXiv:1304.5815] [INSPIRE].
M. Heikinheimo, A. Racioppi, M. Raidal, C. Spethmann and K. Tuominen, Physical Naturalness and Dynamical Breaking of Classical Scale Invariance, Mod. Phys. Lett. A 29 (2014) 1450077 [arXiv:1304.7006] [INSPIRE].
T. Henz, J.M. Pawlowski, A. Rodigast and C. Wetterich, Dilaton Quantum Gravity, Phys. Lett. B 727 (2013) 298 [arXiv:1304.7743] [INSPIRE].
T. Hambye and A. Strumia, Dynamical generation of the weak and Dark Matter scale, Phys. Rev. D 88 (2013) 055022 [arXiv:1306.2329] [INSPIRE].
C.D. Carone and R. Ramos, Classical scale-invariance, the electroweak scale and vector dark matter, Phys. Rev. D 88 (2013) 055020 [arXiv:1307.8428] [INSPIRE].
V.V. Khoze, Inflation and Dark Matter in the Higgs Portal of Classically Scale Invariant Standard Model, JHEP 11 (2013) 215 [arXiv:1308.6338] [INSPIRE].
I. Quiros, Scale invariance and broken electroweak symmetry may coexist together, arXiv:1312.1018 [INSPIRE].
I. Quiros, Scale invariant theory of gravity and the standard model of particles, arXiv:1401.2643 [INSPIRE].
C.T. Hill, Is the Higgs Boson Associated with Coleman-Weinberg Dynamical Symmetry Breaking?, Phys. Rev. D 89 (2014) 073003 [arXiv:1401.4185] [INSPIRE].
M. Farina, D. Pappadopulo and A. Strumia, A modified naturalness principle and its experimental tests, JHEP 08 (2013) 022 [arXiv:1303.7244] [INSPIRE].
K.S. Stelle, Renormalization of Higher Derivative Quantum Gravity, Phys. Rev. D 16 (1977) 953 [INSPIRE].
G. Magnano, M. Ferraris and M. Francaviglia, Nonlinear gravitational Lagrangians, Gen. Rel. Grav. 19 (1987) 465.
G. Magnano, M. Ferraris and M. Francaviglia, Legendre transformation and dynamical structure of higher derivative gravity, Class. Quant. Grav. 7 (1990) 557 [INSPIRE].
A. Jakubiec and J. Kijowski, On Theories of Gravitation With Nonlinear Lagrangians, Phys. Rev. D 37 (1988) 1406 [INSPIRE].
J.C. Alonso, J.F. Barbero G., J. Julve and A. Tiemblo, Particle contents of higher derivative gravity, Class. Quant. Grav. 11 (1994) 865 [INSPIRE].
A. Hindawi, B.A. Ovrut and D. Waldram, Consistent spin two coupling and quadratic gravitation, Phys. Rev. D 53 (1996) 5583 [hep-th/9509142] [INSPIRE].
M. Ostrogradski, Memoires sur les equations differentielles relatives au probleme des isoperimetres, Mem. Ac. St. Petersbourg VI (1850) 385.
A.V. Smilga, Ghost-free higher-derivative theory, Phys. Lett. B 632 (2006) 433 [hep-th/0503213] [INSPIRE].
A. Mostafazadeh, A Hamiltonian Formulation of the Pais-Uhlenbeck Oscillator that Yields a Stable and Unitary Quantum System, Phys. Lett. A 375 (2010) 93 [arXiv:1008.4678] [INSPIRE].
M. Pavsic, Stable Self-Interacting Pais-Uhlenbeck Oscillator, Mod. Phys. Lett. A 28 (2013) 1350165 [arXiv:1302.5257] [INSPIRE].
A. Pais and G.E. Uhlenbeck, On Field theories with nonlocalized action, Phys. Rev. 79 (1950) 145 [INSPIRE].
T.D. Lee and G.C. Wick, Negative Metric and the Unitarity of the S Matrix, Nucl. Phys. B 9 (1969) 209 [INSPIRE].
T.D. Lee and G.C. Wick, Unitarity in the N θθ Sector of Soluble Model With Indefinite Metric, Nucl. Phys. B 10 (1969) 1 [INSPIRE].
T.D. Lee and G.C. Wick, Finite Theory of Quantum Electrodynamics, Phys. Rev. D 2 (1970) 1033 [INSPIRE].
N. Nakanishi, Lorentz noninvariance of the complex-ghost relativistic field theory, Phys. Rev. D 3 (1971) 811 [INSPIRE].
T.D. Lee and G.C. Wick, Questions of Lorentz Invariance in Field Theories With Indefinite Metric, Phys. Rev. D 3 (1971) 1046 [INSPIRE].
S.W. Hawking and T. Hertog, Living with ghosts, Phys. Rev. D 65 (2002) 103515 [hep-th/0107088] [INSPIRE].
C.M. Bender and P.D. Mannheim, No-ghost theorem for the fourth-order derivative Pais-Uhlenbeck oscillator model, Phys. Rev. Lett. 100 (2008) 110402 [arXiv:0706.0207] [INSPIRE].
R.E. Cutkosky, P.V. Landshoff, D.I. Olive and J.C. Polkinghorne, A non-analytic S matrix, Nucl. Phys. B 12 (1969) 281 [INSPIRE].
N. Nakanishi, Remarks on the complex-ghost relativistic field theory, Phys. Rev. D 3 (1971) 3235 [INSPIRE].
D.G. Boulware, G.T. Horowitz and A. Strominger, Zero Energy Theorem for Scale Invariant Gravity, Phys. Rev. Lett. 50 (1983) 1726 [INSPIRE].
E.S. Fradkin and A.A. Tseytlin, Conformal supergravity, Phys. Rept. 119 (1985) 233 [INSPIRE].
R.P. Woodard, Avoiding dark energy with 1/r modifications of gravity, Lect. Notes Phys. 720 (2007) 403 [astro-ph/0601672] [INSPIRE].
A.V. Smilga, Comments on the dynamics of the Pais-Uhlenbeck oscillator, SIGMA 5 (2009) 017 [arXiv:0808.0139] [INSPIRE].
J. Maldacena, Einstein Gravity from Conformal Gravity, arXiv:1105.5632 [INSPIRE].
G. ’t Hooft, A class of elementary particle models without any adjustable real parameters, Found. Phys. 41 (2011) 1829 [arXiv:1104.4543] [INSPIRE].
M.E. Machacek and M.T. Vaughn, Two Loop Renormalization Group Equations in a General Quantum Field Theory. 1. Wave Function Renormalization, Nucl. Phys. B 222 (1983) 83 [INSPIRE].
M.E. Machacek and M.T. Vaughn, Two Loop Renormalization Group Equations in a General Quantum Field Theory. 2. Yukawa Couplings, Nucl. Phys. B 236 (1984) 221 [INSPIRE].
M.E. Machacek and M.T. Vaughn, Two Loop Renormalization Group Equations in a General Quantum Field Theory. 3. Scalar Quartic Couplings, Nucl. Phys. B 249 (1985) 70 [INSPIRE].
R. Mertig, M. Böhm and A. Denner, FEYN CALC: Computer algebraic calculation of Feynman amplitudes, Comput. Phys. Commun. 64 (1991) 345 [INSPIRE].
T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [INSPIRE].
R.P. Woodard, The Vierbein Is Irrelevant in Perturbation Theory, Phys. Lett. B 148 (1984) 440 [INSPIRE].
R. Contino, L. Pilo, R. Rattazzi and A. Strumia, Graviton loops and brane observables, JHEP 06 (2001) 005 [hep-ph/0103104] [INSPIRE].
G. Narain and R. Anishetty, Running Couplings in Quantum Theory of Gravity Coupled with Gauge Fields, JHEP 10 (2013) 203 [arXiv:1309.0473] [INSPIRE].
M. Shaposhnikov and C. Wetterich, Asymptotic safety of gravity and the Higgs boson mass, Phys. Lett. B 683 (2010) 196 [arXiv:0912.0208] [INSPIRE].
E. Elizalde, S.D. Odintsov and A. Romeo, Renormalization group properties of higher derivative quantum gravity with matter in (4-epsilon)-dimensions, Nucl. Phys. B 462 (1996) 315 [hep-th/9502131] [INSPIRE].
I.L. Buchbinder, D.D. Odintsov and I.L. Shapiro, Effective Action in Quantum Gravity, IOP (1992).
E.V. Gorbar and I.L. Shapiro, Renormalization group and decoupling in curved space. 2. The Standard model and beyond, JHEP 06 (2003) 004 [hep-ph/0303124] [INSPIRE].
Y. Yoon and Y. Yoon, Asymptotic conformal invariance of SU(2) and standard models in curved space-time, Int. J. Mod. Phys. A 12 (1997) 2903 [hep-th/9612001] [INSPIRE].
I.G. Avramidi, Covariant methods for the calculation of the effective action in quantum field theory and investigation of higher derivative quantum gravity, hep-th/9510140 [INSPIRE].
E.S. Fradkin and A.A. Tseytlin, Renormalizable asymptotically free quantum theory of gravity, Nucl. Phys. B 201 (1982) 469 [INSPIRE].
G ‘t Hooft and M. Veltman, One loop divergencies in the theory of gravitation, Annal. IHP A 20 (1974) 69.
S. Deser and P. van Nieuwenhuizen, One Loop Divergences of Quantized Einstein-Maxwell Fields, Phys. Rev. D 10 (1974) 401.
S. Deser and P. van Nieuwenhuizen, Nonrenormalizability of the Quantized Dirac-Einstein System, Phys. Rev. D 10 (1974) 411.
A.D. Sakharov, Vacuum quantum fluctuations in curved space and the theory of gravitation, Sov. Phys. Dokl. 12 (1968) 1040 [INSPIRE].
D. Buttazzo et al., Investigating the near-criticality of the Higgs boson, JHEP 12 (2013) 089 [arXiv:1307.3536] [INSPIRE].
D.H. Lyth, What would we learn by detecting a gravitational wave signal in the cosmic microwave background anisotropy?, Phys. Rev. Lett. 78 (1997) 1861 [hep-ph/9606387] [INSPIRE].
M. Sher, The Renormalization Group and Inflationary Potentials, Phys. Lett. B 135 (1984) 52 [INSPIRE].
A. Arvanitaki and S. Dimopoulos, private communication.
M.M. Anber, J.F. Donoghue and M. El-Houssieny, Running couplings and operator mixing in the gravitational corrections to coupling constants, Phys. Rev. D 83 (2011) 124003 [arXiv:1011.3229] [INSPIRE].
L. Randall, Composite axion models and Planck scale physics, Phys. Lett. B 284 (1992) 77 [INSPIRE].